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The National Nuclear Data Center (NNDC) contains a compilation of information on

the β decays of Gallium isotopes. In the mass range A = 74 to 77, the Germanium daugh-

ters lie close to or at the valley of stability leading us to believe the decays would have

been well studied. However, closer inspection indicates significant conflict for placement

of γ-rays and energy levels between different measurements, especially for upper-lying

states. Detailed β-decay studies for the 74−77Ga isotopes were performed using a high

resolution four clover Hyper-Pure Germanium (HPGe) detector system with two β scintil-

lators in the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab

(ORNL) to better understand the structure of the corresponding 74−77Ge daughter nuclei.

In our experiments, use of a high-resolution mass separator greatly improved the purity

of the samples in comparison to previous measurements. Besides that, the efficiency of

the detector system we utilized was much higher than used in previous studies. We also
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established a method to determine statistically significant γγ coincidence relationships to

add reliability to the placement of γ rays to energy levels and avoid experimental biases.

From our analysis, we have established comprehensive decay schemes for all four Ger-

manium nuclei in this study. In most cases, we have extended the energy levels to cover

more of the energy window available for β decay. Our proposed 74Ge decay scheme con-

tains 44 energy levels occupying up to 4.36 MeV with the placement of 99 γ rays. Sim-

ilarly, 75Ga decay scheme contains 71 γ rays with 30 energy levels occupying up to 2.75

MeV. The 76Ga decay scheme has 48 excited states with 100 γ rays occupying up to 4.81

MeV. And, the 77Ge decay scheme has 67 γ rays and 33 energy levels occupying up to 3.14

MeV. Based on the expanded level schemes, β-feeding intensity and log (ft) value lower

limits were calculated and attempts were made to assign the spin-parity of the observed

states. The resulting level schemes were then compared with the Nushellx theoretical pre-

dictions.

Key words: Exotic nuclei, Shell model, High-resolution, Statistically significant, β-
feeding, log (ft), Nushellx result
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Symbols used

N: Total number of neutrons in a nucleus.

Z: Total number of protons in a nucleus.

A: Mass number of the nucleus, which is the sum of the total protons and neutrons.

MeV: Mega electron volt, 1 MeV = 106 electron Volt.

keV: Kilo electron volt, 1keV = 103 electron Volt.

πd5/2: Shell model configuration for the proton energy level with angular momen-

tum l = 2 and total angular momentum j = 5/2. For neutron π is replaced with ν.

πf5/2: Shell model configuration for the proton energy level with angular momentum

l = 3 and total angular momentum j = 5/2. For neutrons, π is replaced with ν.
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δ: Pairing force term coefficient in Bethe-Weizsacker formula.
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A
ZXN : Symbol used to represent atomic information for nuclide of element X with Z

protons, N neutrons and total mass A.

β+: Symbol for β decay process in which an excess proton converts to neutron.

β−: Symbol for β decay process in which an excess neutron converts to proton.

EC: Electron Capture where an inner shell electron is captured by the nucleus con-

verting a proton into a neutron.

γ: Symbol representing a γ-ray radiation.

Qβ: Energy difference between the ground states of the parent and daughter nuclei

involved in a β decay.

FWHM: Full width at half maximum for a γ-ray peak, represents the resolution.

βskew: Parameter representing the skew Gaussian shape of a γ-ray peak.

Iγ: Gamma feeding intensity to a particular state of interest.

Iβ: Beta feeding intensity to a particular state of interest.

Sn: Neutron separation energy.

Definitions

AME2012: Atomic Mass Evaluation 2012.

BR: Branching Ratio.

CARDS: Clarion Array for Radioactive Decay Spectroscopy.

DAMM: Display Manipulation Module, Linux-based package developed at ORNL

for data analysis.

DEP: Double Escape Peak, a γ-ray peak whose energy is two electron masses lower

than the full-energy real peak.
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DGF-XIA: Digital Gamma Finder produced by X-ray Instrumentation Associates.

ESPE: Effective Single Particle Energy.

GERDA: Germanium Detector Array collaboration.

gf3: Linux-based software program within the RadWare package for fitting γ-ray

spectra.

ISOL: Isotope Separation Online, a technique to produce the nuclei of interest.

log (ft): Logarithm value of comparative half-life for particular levels.

rp-process: Rapid-proton capture process: one of the primary nucleosynthesis pro-

cesses.

r-process: Rapid-neutron capture processes: one of the primary nucleosynthesis

processes.

HPGe: High-Purity Germanium detector for γ-ray spectroscopy.

HRIBF: Holifield Radioactive Ion Beam Facility.

LeRIBSS: Low-energy Radioactive Ion Beam Spectroscopy Station.

MTAS: Modular Total Absorption Spectrometer.

MTC: Moving Tape Collector.

NNDC: National Nuclear Data Center.

ORIC: Oak Ridge Isochronous Cyclotron.

ORNL: Oak Ridge National Lab.

RO: Ranging Out method.

SEP: Single Escape Peak, a γ-ray peak whose energy is one electron mass lower

ix



www.manaraa.com

than the original full energy peak.

TAGS: Total Absorption γ-ray Spectroscopy.
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CHAPTER I

INTRODUCTION

Our present knowledge of atomic nuclei suggests that around 6000 to 7000 distinct

nuclei are predicted to exist, of which some 3000 nuclei can be produced and studied in the

laboratory. The less than 300 nuclei which are stable (or especially long-lived) [50,87] are

indicated by black squares on the nuclear chart shown in Fig. 1.1. The region represented

by black squares are also known as the valley of stability which is a characterization of the

stability of nuclides to radioactivity based on their binding energy. The remaining nuclei

are radioactive and undergo some decay process to form the stable nuclei. A tremendous

effort throughout the history of nuclear physics has been to understand the nuclear force: a

force that acts between the nucleons which are responsible for the observed characteristics

of atomic nuclei. Although the major properties of nucleon-nucleon interactions for the

nuclei near stability are well-known [62], questions such as the evolution of single-particle

states as one moves away from the valley of stability remain unanswered [111].

Many theoretical models have been proposed to understand nuclear structure and inter-

actions, but none of them completely describe the structure of all nuclei. The Shell Model

is quite successful for predicting nuclear features and interactions for a large number of

well-tested nuclei near stability. This model accurately describes the structure of low-lying
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Figure 1.1: Segre chart or chart of nuclides [6].

levels in non-deformed nuclei in terms of the coupling of nucleon particles outside a closed

core, or of nucleon holes insides of a closed core. These closed cores are represented by

the empirically known magic numbers 2, 8, 20, 28, 50, 82 and 126 [115]. Even-even nu-

clei which have a proton or a neutron numbers equal to a magic number have a relatively

high energy first excited state energy, while those having a both magic number of pro-

tons and neutrons, the so-called doubly magic nuclei, exhibit enhanced stability including

an especially high first excited state energy, enhanced binding (lower relative mass), and a

smaller relative size. However, it is unclear how this theory applies, or even if the predicted

magic numbers really exist for nuclei which lie far away from the valley of stability where

experimental data is either very limited or non-existent. To obtain a further insight, exper-
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imental data needs to be gathered in this unexplored region to test the various theoretical

models [15, 109, 111].

There are still many neutron-rich nuclei above proton number Z = 20 which remain

beyond the reach of any current facility, and any information about their properties comes

totally from theoretical predictions. Generally, the properties of nuclei near stability are

well known and have been used to extrapolate to nuclei near the particle drip lines. How-

ever, it has been experimentally shown that the general trends expected are not always

followed, requiring some new aspect of the nuclear force to be considered. For exam-

ple, the proton-neutron interaction across the major shells as well as interactions with

continuum states leads to the migration of the single-particle states for nuclei with pro-

ton number near Z = 28 and neutron number from N = 28 to 50, hence approaching

78Ni [27, 29, 37, 53, 54, 61, 78, 111, 117]. Shells and sub-shells are seen to appear and

disappear with the addition of neutrons. This dynamic aspect of reappearance and disap-

pearance of shell closures for nuclei occupying the pf5/2g9/2 shell are an area of current in-

terest as they exhibit anomalous behaviors like deformation and shape co-existence which

are important in understanding the evolution of nuclear structure [22, 56, 113].

The primary goal of this research is to use β-decay spectroscopy as a tool to understand

the evolution of nuclear structure as well as the astrophysical processes involving atomic

nuclei far from the valley of stability. However, there are more practical applications as

well. In recent years, the development of clean nuclear power is considered as an alterna-

tive electrical energy source which is free from greenhouse gases [2, 8, 9]. However, the

same concerns toward nuclear energy are present today as they were in the past when the
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construction of new nuclear reactors began to fall off. These concerns include the issues

of safety, nuclear waste management, nuclear weapons proliferation, and cost. The fission

of nuclear fuel produces a wide range of neutron-rich radioactive products having excess

neutrons which require β decay to go back to stability. During β decay, one of the excess

neutrons converts to a proton with the emission of a β particle, an electron anti-neutrino,

and γ rays. Each of these contributes to the overall heat generation in the nuclear fuel cy-

cle [113]. About 8% of the total heat generated during the nuclear fuel cycle comes from

the β decay of the fission products which is known as decay heat. This decay heat con-

tinues to be generated after the shut-down of the nuclear reactor and varies as a function

of time. Thus, coolant needs to be maintained even after the termination of the neutron-

induced fission process in the reactor, and precise decay heat calculations are essential for

the proper design and operation of the nuclear facilities [17].

For fissioning nuclei like 238U, decay heat can be estimated from summation calcula-

tions using the inventory of nuclei present in the NNDC database. In general, these estima-

tions of decay heat worked well, but a significant discrepancy has been observed between

the predicted and observed decay heat in the 300-3000 s cooling time after the reactor has

been shut down [17]. This indicates the accuracy of the presently available decay data is

not high enough, and nuclear facilities require higher safety margins implying larger eco-

nomic costs. The compiled data in the NNDC database are from the evaluation of different

measurements, which basically used Ge detectors, i.e. the high-resolution technique. Due

to the poor detection efficiency of the Ge detectors, and the fact that the γ-ray detection

efficiency decreases with the energy, it is highly probable that the γ-ray energy actually
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released by the decaying nuclei is not accounted fully. The decay scheme is developed by

the detection of the γ rays and the detection of coincidences between them. In most of

the cases, decay schemes developed from these studies are not complete and the feeding

patterns are incorrectly determined because many weak γ-ray transitions are not clearly ob-

served. This lack complete assignment of γ ray is known as the pandemonium effect [48].

As the Qβ− value increases for neutron-rich nuclei, a large number of excited states are

fed at high excitation energy through allowed β-decay transitions. These states will decay

either by the emission of high-energy γ rays with small intensities or β delayed neutron

emission. The unobserved high-energy or weak γ-ray transitions cause an overestimation

of β feeding intensity to low lying states and underestimation of the total γ-ray energy

released, which propagates the uncertainty in the decay heat calculation [17, 48, 89, 119].

Experiments done in the past used the best technology and techniques available at that

time. But, for β-decay spectroscopy, low detection efficiency, and beam contamination

severely limited the information which could be obtained. This certainly has led to a lack

in knowledge on the detection and placement of weak transitions. A major limitation was

that most of the initial studies didn’t have γγ coincidence data. These early studies used

only energy sums and intensity balance for observed γ rays to develop a decay scheme in

which incorrect placement of transitions based on inferior data caused serious problems.

This dissertation will cover more complete β-decay studies of four neutron-rich Gallium

isotopes near the 78Ni doubly magic nuclide using a purified beam, high-efficiency Ge

clover detectors, and better data analysis techniques along with γγ coincidence informa-

tion to propose new decay schemes. In general, we observed a shift in β feeding to higher
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energy thus affecting our understanding of the total decay heat produced by fission prod-

ucts.

Medium-mass neutron-rich isotopes can be produced in different ways including neutron-

or proton-induced fission of an actinide target, fragmentation of a stable heavy ion beam

by a thick low-Z stable target, or spallation of a thick heavy (high-Z) target by an intense

light-ion beam. Although the Holifield Radioactive Ion Beam Facility (HRIBF) closed

several years ago, data was available from before the closure along with date from sev-

eral experiments performed using the Oak Ridge National Laboratory (ORNL) Tandem

accelerator to use proton-induced fission of Uranium to produce neutron-rich nuclides. All

four experiments covered in this dissertation utilized the Isotope Separation Online (ISOL)

technique [4] to obtain the nuclei of interest.

The nuclei around 78Ni, especially Ga and Ge, are interesting from both experimental as

well as theoretical points of view. Medium-mass even-even Ge isotopes show unexpected

shape transition behavior with shell structure evolution and collectivity in the vicinity of

N = 40 [46, 56, 67, 101]. For nuclei having many valance nucleons, nuclear transitions

involving many nucleons together induce the collectivity. These nuclei also exhibit unique

features like low-level triaxial deformation and shape co-existence [44, 104], i.e. within a

very narrow energy range these nuclei show two or more well-defined states or bands of

states with distinctly different structure.

With the addition of neutrons in the even-mass Ge isotopes for mass number A = 70 to

82 (N = 38 to 50), an increase of collectivity near the middle of the νg9/2p1/2 subshell has

been observed which lowers the first few excited states as shown in the Fig. 1.2. The grad-
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Figure 1.2: Level energy systematics of even Ge isotopes for A = 70 to 82 [11, 12, 34, 45,

95, 97, 99].

ual shape transition of the Ge isotopes is observed with the low-lying second 2+ excited γ

band-head indicating the presence of triaxiality. For the odd-mass Ge isotopes in the same

region, there is a change in the order of the states observed with the addition of neutrons

as shown in Fig. 1.3. All of the Ge isotopes through A = 64 to 84 already have sets of β-

decay information available in the NNDC database. However, a closer inspection indicates

significant discrepancies in the observed γ rays as well as the established energy levels

between various experiments, especially for higher-lying states. Our current study shows

that the NNDC database [6] lacks some details because most of the previous experiments

were done in the early years of high-resolution γ-ray spectroscopy and had issues of source
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Figure 1.3: Level energy systematics of odd Ge isotopes for A = 69 to 80 [13, 76, 77, 96,

98, 100].

contamination, low detector efficiency and a lack of γ-ray coincidence data. Therefore, we

assume that better experimental data will lead to more precise theoretical models which

are needed to provide a better picture of these nuclei. In addition, a more complete under-

standing of the structure of these nuclei and feeding to the higher energy levels will help

with power production calculations in design and operation of future generation nuclear

reactors, as well as the transportation and waste management of radioisotopes [43].

From our detailed β-decay studies of 74−77Ga isotopes, we expect to provide the most

comprehensive level schemes and β-feeding data for all four Ge nuclei. Furthermore, we

expect to extend the decay schemes to higher energy levels through a better understanding

8



www.manaraa.com

of γ-ray coincidences. Although studying a few nuclei will not answer all the questions,

this study will provide us with a better understanding of the pandemonium effect and how

it relates to other nuclei which need to be studied. In addition, this study will fill the gaps

in our knowledge of the evolution of nuclear structure for nuclei far from the stability by

providing new information on weak transitions to enhance the quality of evaluated data on

these nuclei.
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CHAPTER II

THEORETICAL BACKGROUND

2.1 Nuclear Shell Model

The electronic structure of the atom is well described by the filling of electronic shells

which are derived from the observed discontinuities in the ionization energy of the electron

as a function of Z. The closing of atomic shells leads to the noble gases which have very

low reactivity. Adding or removing just one electron from the shell results in a highly

reactive element. With the atomic structure, one only deals with the valence electrons, i.e.

those outside an inert noble gas core. Similar to electronic structure, the study of neutron

separation energies (Sn) for a large number of nuclei near the valley of stability, as shown

in Fig. 2.1, indicates the existence of shell closures in the nucleus. Those nuclei whose

nucleon numbers for protons or neutrons are among 2, 8, 20, 28, 50, 82 and 126, the magic

numbers, have been found to exhibit enhanced stability in their structure. Just after a magic

number, a sudden drop in the neutron separation energy is observed [65].

Shortly after the discovery of the nucleus and the beginning of nuclear physics research,

the potential inside the nucleus was poorly understood and many theoretical models devel-

oped to explore the behavior of nuclei, ultimately this research lead to the development

of the nuclear shell model [69]. A few simple potentials, like square well and harmonic

oscillator, were tried in an attempt to reproduce the observed magic numbers. The time-
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Figure 2.1: Graph of neutron separation energy as a function of neutron number showing

peaks at the neutron magic numbers [36].

independent Schrödinger equation was solved to get the energy levels and spin of the

nuclear states. Although both potentials were able to reproduce the shell closures up to

nucleon number 20, they were identified as non-realistic since the potential goes to infinity

for large radii. A more realistic mean field potential is the intermediate form of a square

well and a harmonic oscillator potential, also known as the Woods-Saxon potential, was

introduced. This potential was again successful in reproducing the shell closures only up

to nucleon number 20. This problem was finally solved with the introduction of a spin-

orbit interaction force which breaks the degeneracy between the pairs of states with orbital

angular momentum l > 0 which is discussed in detail below.

A nucleus is a many-body system of interacting particles. There is no analytical solu-

tion of Schrödinger equation. We can only calculate the approximate solution for such a

system. To simplify the problem, we assume interactions between nucleons in the nuclei
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average out and produce the position dependent average potential also known as mean a

field potential.

Let’s start by considering the average nuclear potential to be a harmonic oscillator

potential,

V (r) =
1

2
mw2r2, (2.1)

where m is the mass, w is the frequency of the oscillator potential and r is the distance

from the center of the nucleus. The solution of the three dimensional Schrödinger equation

with the harmonic oscillator potential gives:

EN = h̄w(N +
3

2
), N = 0, 1, 2, . . . (2.2)

where N is the principal quantum number. The orbital quantum number (l) can be at

most equal to N and can take on only even or odd values as N is odd or even. For each

l value, there is a 2(2l + 1) degeneracy resulting in a total degeneracy for level N of

(N + 1)(N + 2). Closed shells correspond to each value of N , so the model predicting

closed shells for nucleon numbers 2, 8, 20, 40, 70, 12 and 168 (Fig. 2.2). Thus the model

was able to reproduce the observed magic number for first three closed shells up to 20, but

not for the rest.

As mentioned previously, to overcome this discrepancy a more realistic mean field

potential known as the Wood-Saxon potential was introduced. This potential is given by:

V (r) =
−V0

1 + exp[(r −R)/a]
, (2.3)

where V0 is the depth of the potential, r is the radial distance of the nucleon from the

center of the potential, and a andR are the mean radii and surface thickness of the nucleus.
12
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This potential was able to remove the energy degeneracy for different l states of a given

principle quantum number but was still unable to produce the observed magic numbers

above 20 (see Fig. 2.2).

Like electrons in the electronic shell model, nucleons also have an intrinsic spin. To

produce the observed nuclear magic numbers, a strong spin-orbit interaction term was

added to the mean field potential. The total potential becomes:

VT (r) = V (r)− vs(r)~L.~S, (2.4)

where V (r) is a mean field or Wood-Saxon potential, vs(r) is the spin-orbit interaction

radial functions and ~L and ~S are orbital and spin angular momenta respectively. The total

angular momentum ( ~J) is given by:

~J = ~L+ ~S. (2.5)

Since, the spin and orbital angular momentum operators commute with each other, their

inner product becomes:

~L.~S =
1

2
(J2 − L2 − S2), (2.6)

and their expectation value is,

< ~L.~S >=
1

2
(< J2 > − < L2 > − < S2 >) =

h̄2

2
[j(j+ 1)− l(l+ 1)− s(s+ 1)], (2.7)

where s = 1
2

and j = l ± 1
2
. Then the spin-orbit interaction becomes:

< ~L.~S >=


h̄2

2
l, j = l + 1

2

h̄2

2
(l + 1), j = l − 1

2
.

(2.8)
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Figure 2.2: Nuclear shell level structure. The Wood-Saxon potential with spin-orbit cou-

pling exactly reproduces the traditional magic numbers.

Equation 2.8 shows that nuclear energy levels with l > 0 split into two states with

energy gap h̄2

2
(2l+ 1). Addition of the spin-orbit coupling term to the mean field potential

potential successfully reproduces the magic numbers as seen in Fig. 2.1. For example, the

observed large shell gaps for nucleon numbers 28 and 50, shown in Fig. 2.2, come as a

result of the splitting the f7/2 − f5/2 and g9/2 − g7/2 orbitals, respectively [65].

Furthermore, like atomic structure, we can simplify the problem by dividing the nu-

cleus into an inert core, containing most of the nucleons coupled to a 0+ state using the

known shell closures, and a small number of valence nucleons outside the core. The reason

the core gives a 0+ state is that all the nucleons are coupled in pairs of opposite spin (j).
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Let’s take as an example application of the shell model for 17
8 O9. In this nucleons, eight

protons and eight neutrons completely fill the first two major shells (second magic shell

closure), and only a single neutron in the 1νd5/2 orbital determines the properties of the

nucleus causing in the ground state spin-parity to be 5
2

+. We use jj coupling to give states

for odd-odd nuclei and nuclei with more than one nucleon outside the core. The parity is

given by the product of the parties of the coupled states where odd l gives negative parity

while even l gives positive parity. Another example is for 18
9 F9, which has an unpaired

proton and neutron in the 1d5/2 orbitals which are coupled. The total angular momentum

(spin) is in the range |jp − jn|≤ j ≤ jn + jp, giving the possibility of the spin to be 0, 1,

2, 3, 4, 5 with positive parity (parity = (−1)ln+lp). Experimentally it is observed to be 1+

which agrees with one of the shell model predictions.

Thus, the Shell Model description of nuclear structure from the average Wood-Saxon

potential with spin-orbit interactions has been very successful in describing the structure

of nuclei near the valley of stability [65]. The major question is, does this model work for

the nuclei which lie far from stability as they do not have clear description of the mean

field, hence the effective interactions, of the nucleus?

2.2 Question About the Nuclear Shell Model

Although nuclear shell patterns are well described by the mean-field model, some of the

results observed from experiments cannot be explained by this approach. A few examples

include:
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Figure 2.3: Level diagram showing the structure of 17F and 23F nuclei [6, 35, 107].

• Single-particle states for Fluorine are observed to be located at higher excitation

energies than predicted by the shell model. The valance proton in 23F (N = 14) is

found much more deeply bound than in 17F (N = 8) [72] as shown in Fig. 2.3. This

result is surprising since N = 8 corresponds to the major shell closure predicted by

shell model while N = 14 does not.

• For the nuclei in the range 68Ni to 78Ni, as neutrons fills the ν1g9/2 orbits, the Z = 28

shell gap is predicted to become smaller with crossing of the π2p3/2 and π1f5/2 states

as shown in Fig. 2.4 (a). Dropping of π1f5/2 orbital below π2p3/2 orbital for Z = 29

77Cug is experimentally observed [51].

• The energy difference between the lowest two single-particle orbitals outside the Z =

50 closed proton shell in Antimony isotopes, π1h11/2 and π1g7/2 increases with the

excess neutron number and the trends is consistently followed with a decrease in the
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Figure 2.4: Evolution of Effective Single-Particle Energies (ESPE) as a function of neutron

number taken from Ref. [78].

nuclear spin-orbit interaction. The experimental result for Antimony isotopes [91] is

shown in Fig. 2.4 (b).

• The measured single particle energies for ν1f7/2 and ν1f5/2, and first ν2p3/2 and

ν2p1/2 states in 49Ca and 47Ar indicate a reduction in the N = 28 shell gap from

the fp spin-orbit splitting. The mean field calculations with finite range interactions

predict the disappearance of the N = 28 spherical shell closure for nuclei with N, Z

> 10 but do not find any spin-orbit variations [39].

The migration of the proton or neutron orbitals effects the β-decay strength function above

the neutron or proton separation energy affecting the conditions for β-delayed nucleon

emission. The examples given above clearly suggest that there is something missing in the

shell model calculation which needs to be considered.
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2.3 Evolution of Single-Particle States

Understanding the processes behind the evolution of single particle states for neutron-

rich nuclei is important for evaluating the decay behavior of these nuclei. There might

be several reasons why shell structure varies as the shells are filled. The tensor force

has been identified as one of the characteristic parts of the nuclear force responsible for

driving the mechanism for the evolution of single-particle states [78]. Nucleon-nucleon

interactions are believed to occur through multiple meson exchanges, which depends on the

relative position and spinning motion of the nucleus. This interaction creates an attractive

or repulsive force which contributes to the spin-orbit splitting. Additionally, there is a

dominant effect on the single particle energies from the single pion exchange which is

responsible for the modification of the splitting of the orbitals from the spin-orbit coupling

via spin-isospin interactions, known as the tensor force. It has been observed that the tensor

force has a specific, robust and systematic effect on the evolution of the single particle

energies of nuclei, breaking or creating new magic numbers [78].

The tensor force can be written as,

VT = (~τ1.~τ2)([~s1 ~s2](2).Y (2)f(r), (2.9)

where ~τ1,2(~s1,2) is the isospin (spin) of nucleons 1 and 2, the symbol [ ](K) indicates the

coupling of the two operators in the brackets to the angular momentum K, and Y is the

spherical harmonics for Euler’s angles of the relative coordinate.

The spherical single particle energy of an orbit j can be calculated by its kinetic energy

and the effect from the closed shell on the orbit j. When nucleons are added to another
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orbit j′, the single particle energy of the orbit j changes. If the neutron occupies the j′ orbit

while the protons are in orbit j (j 6= j′), the shift of the single particle energy is

∆εp(j) =
1

2
(V T=0

j,j
′ + V T=1

j,j
′ )nn(j′), (2.10)

where nn(j′) is neutron number in the orbit j′. V
j,j
′T are the effective single particle ener-

gies which depend on both occupation number and isospin structure. They can be written

as:

V T

j,j
′ =

∑
J(2J + 1) < jj′|V |ij >JT∑

J(2J + 1)
, (2.11)

where < ij|V |ij >JT is the two body interaction coupling two nucleons to an angular

momentum J and isospin T . This is a monopole interaction.

For l and l′ being orbital angular momentum, let us consider the case shown in Fig. 2.5

with protons in orbitals

j>,< = l ± 1

2
(2.12)

and neutrons in orbitals

j′>,< = l ± 1

2
, (2.13)

the following equation can be derived [78],

(2j> + 1)V T

j>,j
′ + (2j< + 1)V T

j<,j
′ = 0. (2.14)

Equation 2.14 indicates that if both orbital j> and j< are fully occupied, the tensor effect

is zero. Also, the proton-neutron monopole interaction is twice as strong then as either the

proton-proton or neutron-neutron interaction. The detailed explanation of this derivation

is in Ref. [78].
19



www.manaraa.com

Figure 2.5: Schematic diagram of monopole interaction produced by the tensor force be-

tween a proton in j>,< = l ± 1
2

and neutron in j′>,< = l′± 1
2

from Ref. [78].

For the protons in the j< orbital and neutrons in the j′> orbital, because of the high

relative momentum between them, the spatial wave function of their relative motion is

narrowly distributed in the direction of the interactions. In this case as represented in Fig.

2.6 (a), the spin of the two nucleons are parallel and added to give S = 1, which causes an

attraction between the orbitals j and j′. This holds true for nucleons in j> and j′< orbitals

as well.

On the other hand, the protons in the j> orbital and neutron in the j′> orbitals, as shown

in Fig. 2.6 (b), a repulsive interaction is observed. This predicted phenomena from the

addition of the tensor force can describe the evolution of the single particle states observed

in Figure 2.4.

Figure 2.4 (a) shows the effective single particle energies of the proton pf -shell orbitals

(1f7/2, 1f5/2, 2p3/2 and 2p1/2 states) as a function of neutron number for nuclei in the range

from 68Ni to 78Ni. As more neutrons occupy the 1g9/2 orbits (j′>), the proton orbits are
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shifted due to the tensor interaction force. As shown in the Fig. 2.6, proton 1f7/2 orbital

(j>) is lifted up while the 1f5/2 (j<) is pushed downward as neutron number increases

resulting in the decrease in the Z = 28 shell gap between 68Ni to 78Ni.

Figure 2.6: Intutive picture of the tensor force acting two nucleions on orbits j and j′ from

Ref. [78].

Other factors affecting shell evolution include many-body correlations due to pairing

which is important for weakly bound system. As the nuclear potential diffuses near the

extreme of β-stability, new nuclear structure, and excitation modes can be observed which

explains some unique nuclear properties like the nuclear halo.

To confirm the physical aspects responsible for the nuclear structural changes, parti-

cle configurations and interactions in neutron-rich environments, a detailed level-structure

measurement, and direct information about the single particle states is essential.
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2.4 β-Decay: A Tool to Understand Nuclear Structure

As explained in Chapter 1, the less than 300 stable nuclei represented by black squares

in Fig. 1.1, form the valley of stability which are stretches along the N = Z line then moves

steadily to the neutron-rich sides due to the repulsive Coulomb force. The rest of the nuclei

having proton-neutron asymmetry are radioactive and undergo decay processes to form the

stable nuclei. There are different modes for the decay process like α-decay, β-decay, γ-ray

emission, particle emission and so on, by which unstable nuclei move towards the valley

of stability. So, we can think that the balance of the proton and neutron number in the

nuclei determines whether the nuclei is stable or unstable. Too many protons or neutrons

in the nuclei spoil the balance by disturbing the binding energy from the nuclear forces and

makes the nuclei unstable.

There are basically two ways of studying the nuclear properties: reactions and radioac-

tive decay. The prompt radiation from reactions and delayed radiations from decay com-

plement each other. For the β-decay study, we measure the radiation released following

β-particle emission. Although many things might have happened prior to the formation of

the β-decaying states of nuclei, if we can physically or chemically separate the nuclei of

interest, then the β-decay measurement is insensitive to what has happened in the past.

Most of the nuclear ground states decay by the β-decay process. It is a slow process

governed by weak interactions whose half-life ranges from ms to 1015 years. The probabil-

ity for this decay process depends on the relation between the wave-functions of the initial

and final nuclear states. As the observed β-energy spectrum is continuous, extracting the
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structure information is not so straightforward. Although the radioactive decay is limited

for studying properties of nuclei, the main advantages of β-decay studies are:

• β decay is a primary source of information for the newly identified nuclei. Even

knowing the rough estimates of Qβ values and half-lives gives the important clues to

their properties.

• The β-decay properties are important in understating the creation of heavier elements

in the explosive stellar r-process.

• Understanding the β-decay properties are essential for the proper design of nuclear

reactors and associated questions of the shielding.

• There are some medical applications of β decay like Positron Emission Tomography.

There are three different types of the β-decay process, namely β−, β+ and Electron

Capture (EC) capture which are explained in detail below:

1. β−-decay: This is favorable on the neutron-rich side of the nuclear chart in which

one of the excess neutrons converts into a proton with the emission of an electron,

electron antineutrino and γ rays. The simple equation governing this decay is:

β− : n→p+ e− + ν̄. (2.15)

2. β+-decay: This is favorable on the neutron-deficient side of the nuclear chart in

which one of the excess protons converts into a neutron with the emission of a
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positron, electron neutrino and γ rays. The simple equation governing this decay

is:

β+ : p→n+ e+ + ν. (2.16)

3. Electron Capture (EC): This is very similar to the β+-decay process and populates

the same daughter nuclei. In this process, the nucleus captures an atomic electron and

converts an excess proton into a neutron with the emission of an electron neutrino,

X rays and γ rays. The simple equation governing this decay is:

EC : p+ e−→n+ ν +Xray. (2.17)

The EC process cannot occur for nuclei which are fully ionized. All the above-mentioned

processes of general nuclei are given by:

β− : AZXN→A
Z+1XN−1 + e− + ν̄e, (2.18)

β+ : AZXN→A
Z−1XN+1 + e+ + νe, (2.19)

EC : AZXN + e−→A
Z−1XN+1 + νe +Xray, (2.20)

where A
ZXN represents the nuclei having chemical symbol X , proton Z, neutron N and

total mass A. Xray is the X-ray emitted during the electron capture process as atomic

electrons cascade down to refill the space left by the captured electron.

The Fermi theory of β decay states that the β-decay rate (λ) depends on the nuclear

matrix element (Mfi) and the density of final states in daughter nucleus (ρ(Ef )) which is

known as Fermi Golden Rule and given by:

λ =
2π

h̄
| Vfi |

2

ρ(Ef ), (2.21)
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where Vfi = gMfi, g is the β-decay strength constant. The matrix element Mfi represents

the overlap between the initial ψi and final ψf states wave function.

Mfi =< ψ∗f |V |ψi >, (2.22)

where V is the β-decay operator. The final state wave function includes the wave functions

of daughter nucleus, electron and anti-neutrino.

The β-decay spectrum depends on the number of final states accessible to the emitted

particles, Fermi Function (F (Z ′, p)) and the nuclear matrix element. Hence, total decay

rate can be written as:

λ =
g2|Mfi |2

2π3h̄7c3

∫ pmax

0

F (Z ′, p)p2(Q− Te)2dp, (2.23)

where p is the electron momentum (which is integrated up to pmax). The term Q in the

equation is the mass difference of parent and daughter nucleus while the Te is the electron

energy. The integral term in the Equation 2.23 depends on the Z ′ and maximum electron

total energy (E0), also known as Fermi integral (f(Z ′, E0)).

λ =
g2|Mfi |2

2π3h̄7c3
f(Z ′, E0). (2.24)

Using the decay constant

λ =
0.693

t1/2
, (2.25)

the Equation 2.24 becomes:

ft1/2 = 0.693
2π3h̄7

g2m5
ec

4 |Mfi |2
. (2.26)
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Table 2.1: Selection rules [81]

Types of Transition Selection rules ft log (ft)
Superallowed ∆J = 0,±1(no) 1000− 4000 3.0-3.6
Allowded ∆J = 0,±1(no) 2× 104 − 106 4.3-6.0
First Forbidden ∆J = 0,±1(yes) 106 − 108 6.0-8.0
Unique first forbidden ∆J = ±2(yes) 108 − 109 8.0-9.0
Second forbidden ∆J = ±2(no) 2× 1010 − 1013 10.3-13.3
Unique second forbidden ∆J = ±3(no) 1012 12.0
Third forbidden ∆J = ±3(yes) 1018 18.0
Unique third forbidden ∆J = ±4(yes) 4× 1015 15.6
Fourth forbidden ∆J = ±4(no) 1023 23.0
Unique fourth forbidden ∆J = ±5(no) 1019 19.0

The quantity on the left of the above Equation 2.26 is the comparative half-life, which

gives a way to compare the β-decay probability. The ft value ranges from about 103 to

1020 and generally represented in log10 scale. As indicated by above equation, the less

the log (ft) value, the more the overlap of the nuclear wave function leading the higher

probability for the decay [62]. When we know the log (ft) value for particular state of the

daughter nuclei, using the Table 2.1, we can estimate the β-transitions strength to that level.

The β decay is found to occur at a faster rate if the produced lepton carries away l = 0

momentum corresponding allowed transitions known as Fermi decay (S = 0, electron-

neutrino intrinsic spins anti-align). If the lepton carries away l > 1 momentum, this is a

forbidden decay (less likely to happen) and known as a Gamow-Teller transition (S = 1,

electron-neutrino intrinsic spins align). The detail of the explanation is in Ref. [62].
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CHAPTER III

EXPERIMENTAL SETUP

All experiments reported in this dissertation were performed at the Holifield Radioac-

tive Ion Beam Facility (HRIBF) at the Oak Ridge National Laboratory (ORNL). The

HRIBF can provide both accelerated and unaccelerated radioactive ion beams for many

nuclei of varying intensity from less than 1ion/s to thousands of ions/s as shown in Fig.

3.1. The experiments used in this dissertation focused on studies of the copper isotopes, so

the system was tuned to maximize their production relative to other members of the mass

chain. The gallium isotopes studied here either came as a mass contaminant in the beam

or were fed by the β decays of the corresponding copper and zinc isotopes in the mass

chain. Each gallium isotope β decays to a germanium isotope. A schematic diagram of the

HRIBF facility is shown in Fig. 3.2 whose components will be discussed in detail in the

following sections.

3.1 Isotope Separation On-Line Technique

The HRIBF has the capability to produce medium mass, short-lived radioactive iso-

topes utilizing the Isotope Separation On-line (ISOL) technique. This process starts with

the high-energy proton beam from the Oak Ridge Isochronous Cyclotron (ORIC) and ends
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Figure 3.1: Available beam facility at HRIBF, ORNL. The beam production rates are color

coded [21].

with the implantation of the desired beam of radioactive nuclei at the Moving Tape Collec-

tor (MTC). Details on the ISOL technique are presented below.

3.1.1 ORIC

The Oak Ridge Isochronous Cyclotron (ORIC) at Oak Ridge National Laboratory

(ORNL) was constructed in 1962 and initially was used for light ion research (A < 40).

Later it was upgraded making it able to produce heavy ions up to A = 200 as a light ion

driver for Radioactive Ion Beam (RIB) production [105]. Currently, ORIC is a k = 100 cy-

clotron having the capability to produce 50-100 MeV energy proton beams with intensity

up to 20 µA. The magnetic field of the ORIC is provided by three sectors of irons which

are specially designed to provide an increase in the field by 8% at the larger radii. The
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Figure 3.2: Schematic diagram of ISOL facility at HRIBF [79].

major advantage of this synchrocyclotron is it can provide a continuous beam with large

beam current. For these studies, after extraction of a beam from the ORIC, proton beam

was delivered to the production target.

3.1.2 Target

The high energy proton beams from ORIC were impinged on a carbon matrix target

weighting∼6 - 7 grams with a thin layer of uranium carbide (UCx ∼ 10µm) coated over it

(Fig. 3.3). Interaction of the proton beam with the uranium in the target produces a broad

range of fission fragments. Uranium carbide was used in the target over pure uranium

due to its high dispersivity and porosity which decrease the release time of the produced

fission fragments through the effusion and diffusion processes. Successful production of
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Figure 3.3: Targets used in HRIBF experiments. The left and middle panel shows the

microscopic view of uranium un-coated and coated carbon matrix respectively, while right

panel shows the actual view of a uranium carbide pallet [103].

a radioactive ion beam depends on the delays associated with diffusion, release time and

effusive transport which should be within the half-life of the radioisotope of the interest.

3.1.3 Ion source

The fission fragments were transported to the hot plasma ion source which was de-

signed to operate at temperature6 2200 0C [18]. The ion source was optimized to produce

specific radioisotopes of interest which exhibit high efficiency, low energy spread, and

chemical selectivity. Fission products are subsequently ionized to charge +1 states in a

hot plasma ion source then extracted, and accelerated to an energy of about 100 keV, and

injected into the low-resolution mass separator.
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3.1.4 Mass Separator

The Radioactive Ion Beam (RIB) produced by the target/ion source contains a wide

range of nuclei, with several species having nearly identical mass-to-charge ratios. The

radius of curvature for an ion beam in a uniform magnetic field given by

r =

√
2mV

qB2
, (3.1)

where r is the radius of path produced by magnetic field B, V is the accelerating voltage

and m is a mass of ion having charge q. Since the radius of curvature is mass dependent,

an aperture slit can be used to select the mass of interest as long as the resolution of the

dipole magnet is sufficient. Isobaric separation of the desired mass was achieved using

the low-resolution mass separator with mass resolving power M/∆M∼ 600. After the first

stage mass analysis, the radioactive ion beam was directed to the charge exchange cell.

3.1.5 Charge Exchange Cell

The charge exchange cell contains Cesium vapor with a density of 1015 atoms/cm3.

When the mass separated beam from the mass separator passes through the cell, about 5

- 10% of the positive ions pick up electrons to become negative ions. This process takes

place by at least two collisions with the Cesium vapor. The first collision neutralizes the

positive ion while the second collision converts the neutral ions into negative ions. The

positive ions can be deflected by applying electric/magnetic fields which leaves a relatively

pure negative ion beam.

The primary purpose for using the charge exchange cell is to create the negative ions

needed for injection into the tandem accelerator. The charge exchange cell does not need to
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be used for the non-accelerated beams unless it is important to remove particular elements.

However, passing a radioactive ion beam through the charge exchange cell broadens the

beam effectively reducing the mass resolving power of the subsequent isobar separator.

Nevertheless, using the charge exchange cell for unaccelerated beams has some additional

benefits. Some elements like Zn and Cd which have negative electron affinity cannot form

negative ions. These elements are then easily removed during the subsequent magnetic

stages of the separation. For our experiment, removal of the zinc ions from the beam was

generally the goal.

3.1.6 Isobar Separator

The radioactive ion beam from the charge exchange cell was further separated by

passing it through the high-resolution isobar separator with mass resolving power M/∆M

∼ 10, 000, which is achieved through two 55-degree bending dipole magnets with a bend-

ing radius of 2.8 m. This process removes most of the unwanted ions, including Ga, by

using a narrow 1 mm opening window thus producing a purified beam of Cu ions for our

measurements. In the production target, Ga is always more strongly produced relative to

the Cu and Zn as the production cross-section increases with the Z on the low side of the

lower fission peak. Furthermore, Cu and Zn have shorter half-lives which reduce the pro-

duction because they take longer to get out of the target and ion source. Finally, Ga is much

more easily ionized, making its ionization more efficient. The net result is the Ga isobar

is several orders of magnitude stronger than the Cu isobar. We have already removed the

Zn isobar utilizing the charge exchange cell while the high-resolution isobar separator is
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capable of removing the Ga ions providing the pure Cu beam which is injected into the tan-

dem accelerator for acceleration or directly sent to the Low-energy Radioactive Ion Beam

Spectroscopy Station (LeRIBSS).

3.1.7 Tandem Accelerator

The HRIBF Tandem accelerator is an electrostatics accelerator which can operate be-

tween 1–25 MV. This accelerator is located inside a 100-ft high and 33-ft diameter vessel.

Sulfur hexafluoride (SF6) at 7 atm is used as the insulating gas inside the vessel. The Tan-

dem can be used to accelerate either stable or radioactive ions. The negative ion beams

are bent into the vertical direction by a dipole magnet at the base. The ions are then ac-

celerated toward the positive potential at the top of the Tandem. A 180o magnet bends the

beam back toward the ground. The beam then goes through a stripping foil which results

in a distribution of positive charge states which is then accelerated away from the positive

potential of the Tandem. The desired charge state and energy is selected by a second dipole

magnet at the base of the tandem. These post-accelerated ion beams were delivered to the

experimental station.

3.2 Detector End Stations

Experiments could be carried out in two different ways: either with accelerated beams

using the Ranging-Out system, or non-accelerated beams using LeRIBSS. Ranging-Out

was used for 76−77Cu experiments, while the measurements at LeRIBSS included 74,75,77Cu.
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3.2.1 Discussion of Ranging Out mode vs. LeRIBSS

For the Ranging-Out system, the negatively charged ion beam from the high-resolution

mass separator could be accelerated to 2-3 MeV/u by the HRIBF tandem accelerator. With

the additional energy for the beam, it could be transmitted through a Micro-channel plate

(MPC) detector and a six segmented mini ionization chamber (mini-IC) which is filled

with Tetrafluoromethane (CF4) gas at low pressure. The measurement of six ion energy

loss signals in the mini-IC allowed us to identify the atomic number Z of individual mono-

energetic isobars. Higher atomic number Z-ions lose more energy, i.e. those closer to

stability and of less interest. It was, therefore, possible to purify the beam by increasing

pressure in the mini-IC, thus ranging out higer -Z ions in the exit window of the mini-IC

and allowing through only the beam component having the lowest atomic number [40].

Because the beam had lost most of its energy and had scattered significantly in the slowing

process, the MTC deposition point needed to be placed immediately behind the exit win-

dow of the mini-IC as shown by position 1 in Fig. 3.4. This is known as the Ranging-Out

(RO) mode. Alternatively, the mini-IC could be run at a lower pressure which allowed all

the ions to pass through and be deposited on the MTC at the center of the CARDS array

(position 2 in Fig. 3.4). The PT mode of the experiment has the advantage that it allowed

us to identify each ion present in the beam. By knowing the exact amount of each ion

deposited and measuring absolute γ-ray intensities, absolute branching ratios could be de-

termined. A more detail explanation of this Ranging Out method is given in Refs. [40,114].

After removal of long-lived higher-Z isobars, very pure ion beams (with final rates of a few
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Figure 3.4: Schematic diagram of Ranging Out taken from Ref. [21].

hundred ions per second) were deposited onto a moving tape collector (MTC) in the detec-

tor set up.

For the LeRIBSS system, a pure ion beam from the high-resolution isobar separator

was delivered to LeRIBSS and was deposited onto the MTC with a deposition point in the

center of the detector set up. The advantage of LeRIBSS is there is no loss of beam intensity

due to charge stripping in the tandem accelerator. The majority of the instrumention used

for both end stations were the same as will be explain in the following section.

3.2.1.1 Moving Tape Collector

An isotope of interest was deposited on the Mylar tape which transports from implan-

tation point to measurement point and away from the detector region in order to distinguish

the γ rays emitted by nuclides with different half-lives. There are two modes of operation

with the MTC.
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Figure 3.5: Four clover High-purity Germanium detectors set up along with two plastic β

scintillators as used at LeRIBSS.

1. The move into place mode is where the beam is collected on the MTC and then

periodically moved into the detector array. This was only used for part of the RO

measurements when the pressure in the ion chamber was high (position 1 in Fig.

3.4). For both 76,77Cu this mode was used. The MTC transport time to move the

source into position was about 500 ms.

2. The take way mode is where the point of deposit is at the center of the detector array

allowing observation of grow-in and decay time periods before the activity is moved

away. All experiments used this mode at some point, and it is the only mode used at

LeRIBSS. The MTC transport time for taking away the source was between 250 ms

and as improvements were 500 ms made for later experiments.
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Figure 3.6: For the RO mode of the experiment, figure on the left shows the mini-IC while

the figure on the right shows the MTC and HPGe detectors in CARDS set up.

3.2.1.2 CARDS Array

For either the RO or LeRIBSS locations, the same basic detector array was used. The

detectors were housed in the Clarion Array for Radioactive Decay Spectroscopy (CARDS)

framework and consisted of four HPGe clover γ-ray detectors and 2 plastic scintillator

counters for detecting β decays. Each clover detector has four Germanium crystals. There-

fore, we have 16 crystals and thereby 16 channels for γ-ray detection. The two β detectors

are used to reduce the background by gating the γ-ray spectra. The detector efficiency

of the HPGe depends on the energy of the γ rays. As wil be discussed in Chapter 4, the

absolute photopeak efficiency of four clover detectors in LeRIBSS setup has a maximum

efficiency of 31.0% at 100 keV and 6.2% at 1.33 MeV.

When discussing the detector in γ-ray spectroscopy, there are three types of efficiency

which are considered based on the interaction in the detector. When a γ ray enters a detec-

37



www.manaraa.com

tor, it can go through a number of interactions including photoelectric, Compton and pair

production, which each deposits energy in the detector. If all the γ-ray energy is deposited,

then we observe a full energy peak. However, the γ ray can lose energy and scatter out of

the detector which results in the Compton continuum. The absolute photopeak efficiency

is the probability that if a γ ray is emitted that the full energy of the γ ray is deposited in

the full energy peak. The total γ-ray efficiency refers to the probability that any signal is

deposited in the detector and therefore includes the photopeak and Compton background.

Making absolute measurements is not always easy but getting the relative photopeak effi-

ciency is much easier. In determining the relative γ-ray intensities, it is sufficient to use

the relative photopeak efficiency because the uncertainty is much smaller. Nevertheless,

we need the absolute efficiency to correctly make the summing corrections as will be dis-

cussed later.

The two plastic β scintillators are made using BC404 [1] of 15 cm length and 5.12 cm

diameter covering almost 4π solid angle around the 0.5 mm thin-aluminum beam pipe and

connected to photomultiplier tube by a short light guide as shown in Fig. 3.6. Most of the

β particles have energy more than 1 MeV so that they can pass through the aluminum pipe

of thickness 0.5 mm to the plastic scintillators where they are detected. Because the β-

decay energy is split between the β particle and the anti-neutrino, the detection efficiency

of the β detectors is also energy dependent. However, β particles at lower energy or which

enter the pipe at a small angle will be stopped in the pipe and not detected and this set up.

The Qβ value of the decay determines the maximum β particle energy for feeding to an

excited state and hence the β particles that could reach the β detectors. Although there is
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some variation for a particular decay, the main determining factor for a decay is Qβ . For

example, we see the β efficiency close to 50% for the 74Cu (Qβ = 9.75 MeV) whereas 74Zn

(Qβ = 2.29 MeV) has less than 10% efficiency. This knowledge helps to associate the γ

rays with a decay and can even help in the placement of the γ rays in the decay scheme.

3.2.1.3 Data Acquisition System

A triggerless data acquisition system was used to record the energy and absolute time

of each γ ray emitted during β decay based on a common clock which was synchronized

across all modules. Triggerless data acquisition system used in our experiment benefits

by avoiding the loss of valid data. We used the first generation DGF-4C modules for

the RO experiments with a 40 MHz clock (25 ns time stamp) while for the LeRIBSS

setup, DGF Pixie-16 modules were used with a 100 MHz clock (10 ns accuracy) [41,

42]. The scintillators were used to tag the β-decay events, while the HPGe detectors were

used to measure the γ-ray energies. All the events were time tagged allowing the offline

generation of γ-single spectra and γγ coincidence matrix both with or without a β gated.

The signals from the Germanium clover detectors were also subject to the “add-back”

procedure (summing of signals from each detector) to reduce background and increase

photopeak efficiencies. However, the resulting add-back γ-ray singles spectrum showed

significant degradation of the resolution as well as questions about the proper photopeak

efficiency. Therefore the γ-ray singles spectra without add-back were used to determine

the intensity of the γ rays. A time gate of 100 ns was applied to construct γγ and βγ

coincidences.
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CHAPTER IV

DATA ANALYSIS

The working principle of all nuclear radiation detectors follows similar characteristics:

radiation enters the active volume of the detector, interacts with the atoms of the detector

material, and releases a large number of the low-energy electrons from their atomic orbits.

These electrons then get collected and form the voltage or current pulse. The amplitude of

the current pulse corresponds to the energy of the nuclear radiation.

For radiation like α or β-particles, when they pass through the detector, electron-ion or

electron-hole pairs are created. But, for radiation likeX rays or γ rays, they do not directly

ionize the detector medium. Hence, the detectors measure the secondary electrons arising

from the interactions of the radiation with the detector material. The absorption of the

γ ray energy occurs mainly through the photoelectric effect, Compton scattering or pair-

production. If the total energy of a γ ray is absorbed in the detector, the signal contributes

to the full energy peak, whereas if a γ ray is inelastically scattered out of the detector, then

the signal contributes to the Compton background.

A low-energy γ ray with a few hundred keV energy transfers all of its energy to the

orbital electrons of the detector, the electrons get ejected and the γ ray disappears. In this

case, the energy of the ejected electrons is equal to the incident γ-ray energy less than elec-
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tron binding energy. The vacancy created in the electron shell because of the photoelectric

emission is filled by electron arrangement with the liberation of binding energy either in

the form ofX-rays or Auger electrons. The photoelectric effect decreases sharply for γ-ray

energies few hundred keV. For γ rays in the several hundred keV to MeV range, Comp-

ton scattering becomes the dominant mode of energy loss. In this process, the incident

γ ray transfers a fraction of its energy to the outer shell electrons inside the detector and

get scattered with less energy. The remaining lower energy photons may undergo multiple

Compton scattering events or photoelectric interactions and deposits all their energy in the

detector. When the energy of the incident γ ray is more than 1.022 MeV, i.e. total rest

mass energy of an electron-positron pair, part of the original γ ray may disappear with the

creation of an electron-positron pair in the process known as pair production. The positron

subsequently annihilates with an orbital electron and produces two 511-keV γ rays which

will be absorbed in the detector by the photoelectric effect or Compton scattering. These

two photons can escape the detector without interactions or can partially or fully be ab-

sorbed. When both photons escape from the detector, they result in a separate peak in the

spectrum whose energy is equal to 1022 keV less than the original γ-ray energy. This is

called the double escape peak (DEP). If, instead, only one of the photons escapes, it re-

sults in a peak having energy 511 keV less than the original γ-ray peak. This is known

as the singe escape peak (SEP). For the high energy γ rays, pair production phenomena

more dominant than the photoelectric effect and Compton scattering. All these interac-

tions cause the electrons to move in some way creating the electric current which can be
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amplified and measured to estimate the energy of the γ ray. The detailed explanation of

the process is given in Ref. [60].

As explained in Chapter 3, we used four clover HPGe detectors, two β scintillator

detectors, and data were collected in trigger-less data acquisition mode in order to avoid

the loss of valid events. The digital electronics were coupled with the detectors to analyze

the signals. A cryostat setup was used for the HPGe to avoid the thermal excitation in

the detector active volume which would decrease the energy resolution. Each clover in

a HPGe detector has four crystals. This multi-crystal structure has benefits of fast signal

rise time and better energy resolutions. Each Ge clover crystal detector was independently

biased by applying a high voltage. The detector signal was picked up by a charge sensitive

pre-amplifier to convert the charge pulse into a voltage signal. These signals were directed

to the DGF-4C modules in the RO experiment and to the Pixie-16 modules in the LeRIBSS

measurements. The modules digitized the energy signal utilizing an ADC to convert the

strength of the signal into a channel number adding a time stamp. A γ ray can Compton

scatter into a neighboring crystal and be detected as two separate γ rays. To overcome

this effect, an add-back technique was implemented in the RO mode of the experiment but

wasn’t used in LeRIBSS mode due to the resolution problems. In the add-back method, the

full energy of the γ ray was reconstructed by by summing the energies deposited within

the event time for each crystal in a clover detector thus reducing the background in the

spectrum.

Each crystal in a clover detector has a different response to the γ rays, so that raw

spectra vary from crystal to crystal. In order to obtain the single cumulative spectrum, we
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energy calibrated each crystal by selecting some reasonably pure, statistically strong γ-

ray peaks which are well known and have already been cataloged in the NNDC database.

An iterative process was followed to extend the preliminary energy calibration beyond

the energies available for the NNDC by using single and double escape peaks. We have

selected γ-ray peaks covering the entire energy range of the observed spectra for each

mass chain studied. Energy calibration of all 16-crystals was performed using a reduced

chi-square method. After the energy calibration, all the spectra from the different crystals

lined up and a summed γ-ray singles spectrum could be obtained. Finally, we performed a

scan of the data to generate a histogram files, to be discussed in more detail later, containing

the various spectra and coincidence matrices to be analyzed.

The transition energy between two states of the nucleus has a unique signature. For an

ideal detector, the full energy of the γ ray will be perfectly absorbed giving the extremely

narrow peak (δ function) in the spectrum. But in practice, the decay spectrum would be the

Gaussian-shaped peak which arises from the several possible events that may occur when

the γ ray enters the detector and gets converted to signal. To determine the energy and

intensity of the γ-rays detected, we have used the gf3 fitting program from the RadWare

software packages [80]. The center of the fitted peak gives the energy whereas the area

gives the intensity of the corresponding γ ray. Different factors like statistical fluctuation

in number of charge pairs produced in the detector, incomplete charge collection, and noise

associated with electronic devices can affect the shape of the γ-ray peaks. Therefore, the γ-

ray peaks have both Gaussian and skewed Gaussian components. In addition, γ-ray peaks

below about 200 keV can have a step function in the background. The shape of the γ ray

43



www.manaraa.com

can be modeled using several shape parameters, namely R, β, FWHM and the step-size. Fit

parameters: R defines the height of the peaks for both Gaussian and skew Gaussian profile,

β is the decay constant of the skew Gaussian profile, the step is the relative height of the

smoothed step function, and FWHM represents the peak width (broadening of the peak) in

the spectrum. For proper fitting of the γ-ray peaks, the shape parameters were calibrated

through multiple iterations before being held fix during the final fitting step. Details on the

shape parameters are given in the following paragraph.

The R and β parameters vary linearly with the channel number while FWHM varies

quadratically as govern by the equations:

R = A+Bx, (4.1)

β = C +Dx, (4.2)

and

FWHM =
√

(F 2 +G2x+H2x2), (4.3)

where, x is the channel numbers, and A, B, C, D, F , G and H are the coefficients of fit

parameters. The step size has less contribution to the peak shape and is only important at

low energy, so we first fixed the step size and varied other parameters in a cyclic fashion.

We started by performing the gf3 fitting of some major peaks in the spectra (for the 74Ga

β decay, we fitted the 596-, 868-, 1064-, 2353- and 4255-keV γ-ray peaks), recorded the R

values as a function of channel number and initialized the fitting parameters A and B in the

gfinit.dat file (file used by gf3 software for proper fitting of γ-ray peaks). Next, we fixed

the step size and R value, freed the other parameters, β and FWHM. We again performed

44



www.manaraa.com

the fitting of the same set of γ-ray peaks and record the β values as a function of channel

number, and initialized the C and D parameters in gfinit.dat. In the third step, we fixed

everything except FWHM, then fitted the same sets of peaks and determined the FWHM

value as a function of channel number, used that information to initialize the values of F,

G and H, and added the information to gfinit.dat. We repeated all the above steps several

times until we obtained stable coefficients for the fit parameters.

Once the fit parameters were statistically established, we used gf3 to fit all possible

γ-ray peaks seen in the γ-ray singles spectrum, with the result stored in a raw data file

including peak centroids and areas. The raw data files were read by the MASTER program

to generate the energy and intensity of the γ-ray peaks by taking into consideration the

efficiency and energy calibration files. Different efficiency files were used for different

projects detector configurations. Figure 4.1 shows the absolute photopeak efficiency curve

used for our first project (74Ga β decay). The Ge clover array has a maximum photopeak

efficiency of 29% about 100 keV and falls to 5% at 1.33 MeV in LeRIBSS set up. In the

RO set up, these values were 22% at 100 keV and 5% at 1.33 MeV. The γ-ray efficiency of

the clover detectors were determined using the standard γ-ray sources including 57,60Co,

88Y, 109Cd, 113Sn, 133Ba 137Cs, 139Ce, 152,154,155Eu, 210Po, 226Ra and 241Am.

During the analysis, we have used four different types of spectra: γ-ray singles, β-

gated γ-ray singles (βγ), γγ coincidences and β-gated γγ coincidences spectra. For each

β-decay event, if it doesn’t directly feed to the ground state, it will populate an excited

state based on the selection rule given in Table 2.1, and should emit a single γ ray or

a cascades of γ rays which are in coincidence with the β event. Although, the β-gated
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Figure 4.1: Example sum of four clover HPGe detector absolute photopeak efficiency curve

measured for the CARDS setup at LeRIBSS.

spectra significantly decreases the γ-ray intensity compared to the γ-singles spectrum, it

provides a strong advantage in reducing the large background and unwanted radiations

during the analysis. The βγ spectra allow for the assignment of γ ray to decays based on

β detection efficiency. During the process of populating the high energy states, the emitted

electrons may have very low kinetic energy, which will not be able to pass through the

beam line wall to the scintillator detectors. This will result in the exclusion of the some

of the low-intensity γ rays in the βγ coincidence analysis. The γ rays detected by two

detectors within a certain time window are used to generate the γγ coincidence spectra.

These coincidence spectra were used to build the decay scheme connecting the cascades of
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γ rays. The coincidence information was also used to reconstruct the actual γ-ray intensity

for unresolved doublets.

4.1 Decay Scheme Development

We made a general assumption that the strongest transition in the decay scheme should

de-excite the low-lying states by decaying to either the ground or an isomeric state. As our

collected γ-ray singles spectra have the γ rays associated with all daughter nuclei, we first

needed to identified the γ rays associated with each member of the decay chain, though

our interest here is the Ga isotopes. With a set of identified γ rays, we could begin the

process of building a decay scheme. The primary method of determining the placement of

the γ rays in the decay scheme was based on the coincidence information and construct the

decay scheme based on the statically significant γγ coincidences.

4.1.1 Coincidence Gating Techniques

By setting a gate on the horizontal axis of the two dimensional γγ matrix, a spectrum

of γ-rays coincident with the gating energy range was obtained. A peak gate is made to ac-

cept most of the events associated with a specific γ ray of interest along with the Compton

background present in that region as well as possible overlapping γ rays. An associated

Background gate (that includes Compton scattering events or unresolved γ rays) was taken

in the same region of the spectrum and was subtracted from the Peak gated spectrum to

obtain the γγ coincident information. In most cases, the coincidence gating process was

complicated due to the overlap of the γ-ray peaks such that a single background gate was

insufficient to remove the contamination from the adjacent γ rays. Figure 4.2 shows an
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Figure 4.2: Figure showing the gates for the 1941 keV γ-ray peak which contains some

little contribution from the near by peak. The red colored region represents the peak with

background whereas the black colored regions represent background. The horizontal axis

is scaled at 0.4 keV/channel in order to perform the precise gates. The true energy is

displayed at the top of the plot.

example of the gating technique utilized for the 1941-keV γ-ray peak associated with 74Ga

β decay to obtain a clean γγ-coincidence spectra. For this γ ray, the problem is overlap

with the adjacent 1945-keV γ ray from 74Cu β decay which extends into the regions of

the 1941-keV γ-ray peak. For the 1941-keV γ-ray peak, we have chosen peak gate from
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channel numbers 4844 to 4460 while the background gate was the sum of channel number

4860 to 4862 and 4878 to 4882. Generally, we adjust the background gate several times so

that the contribution of the overlapping γ rays can be completely subtracted out. Further-

more, background gates were sometimes scaled to improve the subtraction process. We

have used the add-back γγ coincidence matrix for the for coincidence analysis but used

the non add-back coincidence matrix for estimating the intensity purpose.

4.1.2 Statistically Significant Coincidences

In the past, most γγ coincidence analysis involved only a visual inspection of the

background-subtraction coincidence spectrum to determine coincidences. However, in the

simple qualitative visual inspection of the background subtracted spectra, it is not always

clear which γ rays are in real coincidence or if an observed peak is just the residue from an

incorrect background subtraction. Another important issue to address was how to justify

the placement of a γ ray to new level if it was the only γ ray observed coming from the

new levels, i.e. how do we have confidence in such a placement? To put a quantitative

answer to this question, we have developed a more objective plan by determining the sta-

tistical significance factor (S) for each observed γ ray obtained from the projection of a γγ

coincidence gate as described in the next paragraph.

Due to the low statistics and distorted peak profiles of the γ-ray peaks observed in

the background subtracted spectrum, we have used the peak-gated and background-gated

spectra for analysis purpose. Gaussian functions were fitted to any peak observed in the

peak gate using the DAMM program with up to 15 peaks selected at a time. The positions
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of these peaks were fixed, and the same set of peaks was then fitted in the Background

gate. The significance factor (S) was determined for each peak as the difference in the two

areas (∆A) divided by the total uncertainty (σ), where, σAP
and σAB

are the uncertainties

in Peak area and the Background area. As a formula this is

S =
∆A

σ
=

AP − AB√
σ2
AP
− σ2

AB

. (4.4)

If a peak was found to have S ≥ 2.00, i.e. 2σ above background, then the coincidence

is considered to be possible, while if S ≥ 3.75 (probability of 99.98 %) it is considered

a definite coincidence. This statistical significance factor provides the justification for the

placement of γ rays to a new level as well as removes any evaluator bias from the analysis.

4.1.3 Resolving the Doublets

The relative intensity of the observed γ rays is calculated using the area obtained from

the Gaussian fit of each peak in the γ-ray singles spectrum normalized to the area of the

principal peak in the decay. Some of the detected γ rays can have nearly the same energy

and appear as a single unresolved peak in spectra. These γ rays may either belong to

different members of the decay chain or follow a different de-excitation path in the decay

cascade even if they belong to a single β-decay parent. These unresolved γ rays which

should be placed in different locations within a decay scheme are known as doublets. The

doublets are so close in many cases that the gf3 fitting cannot separate the peaks even if we

know they are present. Therefore we needed an alternative method to extract the energies

and intensities for these close doublets. This is one of the main issues in the current NNDC
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database have. All the previous measurements multiply placed several γ rays without

dividing the intensity, which causes incorrect feeding predictions to the energy levels.

After constructing the complete decay scheme, we can resolve the doublets by taking

the γγ coincidence information into consideration. To resolve the possible γ-ray doublets

and assign the proper intensity to each in the decay scheme, two methods have been de-

veloped as described in the following sections. To determine the energy of two members

of the doublet, we have used the centroid of the γ-ray peaks seen in the coincidence gate.

Most of the time, we have checked several γ-rays coincidence spectra in cascade and took

a weighted average of their energies. To predict the uncertainty associated with their en-

ergy, we have used the gf3 fitting software. We fixed the height (that comes from the area

of the doublets estimated form the methods explained below) and freed the position of the

peak which gives the position and uncertainty associated to the γ-ray doublets.

4.1.3.1 Method-I

A simple decay scheme is shown in Fig. 4.3 in which γ rays γj and γk both feed into

level L1 which can be depopulated by several γ rays including γi. We will assume that the

coincidence data suggest that γk is part of a doublet while γi and γk are well defined clean

peaks. We need to derive a method to estimate the number of counts to correctly associate

the γk. By setting a gate on the γ-ray peak γi, we can generate the coincidence spectra and

estimate the coincidence counts of γj and γk with the γi. The expected number of counts

for γk in the γ-ray singles spectrum (A(γk)) can be estimated by multiplying the ratio of
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Figure 4.3: Sample decay scheme-I.

coincidence counts of γk and γj (A(γi/k) and A(γi/j), respectively) with the number of

counts for γj obtained from the γ single spectrum (A(γj)), which is written as:

A(γk) =
A(γi/k)

A(γi/j)
A(γj). (4.5)

This method is very useful for most of the scenarios where the intensity of a doublets

needed to be divided.

4.1.3.2 Method-II

Consider the case shown in Fig. 4.4. In this decay scheme, the γ-rays γi, γj and γk

are in a sequential cascade. Evidence from the coincidence gate set on γk suggest that it

is an unresolved doublet, and we need to divide the intensity determined form the singles

spectrum between two different placements. To extract the intensity to associate with γk

for the indicted cascade, we first define the unknown total number of decays as N0 for the

parent, Ni as the number of γi detected in the γ-ray singles spectrum, εi is the absolute

52



www.manaraa.com

Figure 4.4: Sample decay scheme-II.

photopeak efficiency for γi, and Bi is the branching ratio, the percentage of the decays

which produce the γ ray, for γi. The value of Ni is given its terms of the other parameters

by:

Ni = N0εiBi. (4.6)

Next we designate the number of γj detected in coincidence with a gate on γi, as γγi/j .

This value is determined from the number of detected events for γi (Eqn. 4.6), multiply by

the probability that the γi will see γj , and then taking into account the detection efficiency

for the γj (εj). The probability that γi will see γj is just the ratio of the intensity of γi

(Ii) divided by the sum of the intensity for all γ rays observed to de-excite level L1 (IL1).

Combining this information we obtain;

γγi/j = (N0εiBi)εj
Ii
IL1

. (4.7)
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In the same way, the number of detected γk in coincidences with a gate on γi, denoted

as γγi/k, is given by :

γγi/k = (N0εiBi)εk
Ii
IL2

Ik
Ii

= (N0εiBi)εk
Ik
IL2

(4.8)

, where εk is the absolute photopeak efficiency for detection of γk, Ik is the relative intensity

of γk, and IL2 is the total summed intensity of all γ rays de-exciting the level L2. From

Equations 4.7 and 4.8, the ratio of the number of γk and γj in coincidence with γi is given

by:

γγi/k
γγi/j

=
εk
εj

IL1

IL2

Ik
Ij
. (4.9)

The relative intensity of a γ rays can be written as some constant C which multiplies the

ratio of the number of detected counts to absolute photopeak efficiency. Hence the ratio

for the intensity of γk to γj is given by:

Ik
Ij

=
C Nk

εk

C
Nj

εj

=
Nk

Nj

εj
εk
. (4.10)

Then Equation 4.9 becomes:

γγi/k
γγi/j

=
IL1

IL2

Nk

Nj

, (4.11)

⇒ Nk =
γγi/k
γγi/j

IL2

IL1

Nj. (4.12)

This calculation gives us the γ-ray singles counts for γk in the decay scheme shown in Fig.

4.4. Similarly, we can calculate the γ-ray singles counts of the other complementary part

of the doublet allowing proper splitting of the observed counts between the two γ rays.
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4.1.4 Level Energies and Feedings

After assigning the proper energies and intensities for the γ rays in the decay scheme,

the MASTER program was used to calculate the least square fit level energies and the

relative β-feeding intensity for all proposed energy levels. We assigned the strongest γ-

ray transition intensity to be 100 and normalized the rest of the γ-rays intensity relative

to this value. To convert the relative intensity to absolute intensity, we summed all the

γ-rays intensity feeding the ground state. Then, ground state feeding was normalized to

100%. Furthermore, to get the exact feeding intensity summing correction was performed

using MASTER program with considering few keV Kα energy for particular isotope of

our interest. For the ground state, β-feeding could not be directly measured. Instead,

we could make a reasonable estimate for the ground state feeding based on the ground

state spin-parity assignments for the parent and daughter nuclei as determined in different

measurements.

The Nuclear Structure and Decay Tool section of the NNDC data website was utilized

to calculate the log (ft) value corresponding to each establish level. This tool takes the

atomic number of parent nucleus, it’s half-life, Qβ value, the energy values for the parent

state and state being fed in the daughter nuclide with the absolute β-feeding intensity to

generate the log (ft) value. A higher log (ft) value corresponds to a lower β-feeding inten-

sity and vice versa. The log (ft) value ranges for different β-decay levels of forbiddeness

are summarized in the Table 2.1.
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CHAPTER V

THE β DECAY OF 74GA

5.1 Introduction

A detailed study of β-decay far from stability relies heavily on a good understand-

ing of the daughter and grand-daughter nuclei decays in order to correctly assign weaker

transitions to the decays. In this experiment, an attempt was made to perform a complete

β-decay study of the A = 74 isobaric mass chain to obtain information on the structure of

the daughter nuclei. A purified 74Cu beam was used at the Holifield Radioactive Ion Beam

Facility (HRIBF) of Oak Ridge National Lab (ORNL) to study the β-decay of the A = 74

decay chain using three High Purity Germanium (HPGe) clover detectors in the Low en-

ergy Radioactive Ion Beam Spectroscopy Station (LeRIBSS) set up. In this measurement,

data on γ-ray emission following β decay including γ-ray singles and γγ-coincidence

spectra along with β-gated versions of the spectra, were obtained. The primary goal of this

experiment was a precise measurement of the 74Cu decay [110], but it also allowed for a

detailed studied of all daughter nuclei, i.e. 74Zn and 74Ga. In the following sections are

presented a discussion of the scientific motivation for the research, experimental details,

and the results including the proposed decay scheme, β-feeding intensities, correspond-

ing log (ft) values with tentative spin-parity assignments, and comparison with Nushellx

theoretical calculations.
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5.2 Scientific Motivation

The evolution of the first excited states in a series of isotopes or isotones yields informa-

tion about the gradual shape transition within these sequences nuclei. The experimentally

observed lowering of the first 2+ excited state in 70−76Ge even-even isotopes indicates the

possible existence of spherical and deformed configurations with triaxiality [44, 104] in

this region around the N = 40 subshell closure making 74Ga an interesting physics case

for a β-decay study. 74Ga is an odd-odd nuclide with a ground state spin-parity of 3− [68].

In the traditional shell model view of the β-decay process, one neutron in a ν1g9/2 state

converts into a proton in the π2p3/2 state resulting in stable even-even 74Ge with a closed

π2p3/2 orbital. The schematic diagram of this process is shown in Fig. 5.1.

Figure 5.1: Shell model view of 74Ga nuclei.
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The structure information of 74Ge from the β decay of 74Ge comes from previous two

measurements by Camp et al. [24] and Taylor et al. [106] which are stored on the ENSDF

of NNDC database. Both of the studies produced 74Ga from (n, p) reaction using the

74Ge powder target which was 95.8% and 94.48% pure in Camp et al. and Taylor et al.

measurement, respectively. The two previous β-decay measurements of 74Ga performed

by Camp et al. and Taylor et al. [24, 106] lack a consistent description of 74Ge. Although

the two experiments agreed on the observed γ rays, the placement of these transitions

into a decay scheme disagreed significantly. This leads to numerous double placements

and erroneous levels being assigned within the ENSDF database. The level scheme below

2.6 MeV is agreement between the two measurements. However, above 2.6 MeV the

decay scheme is fraught with inconsistencies. Of the 113 γ rays listed in the two papers,

placement of only 59 are in agreement between the two studies. For the remaining 54 γ

rays for which the placements are not in agreement, 11 are doubly placed so that there are

actually only 102 γ rays assigned to the decay. The decay scheme proposed by Camp et

al. [24] was developed from data obtained with a small single Ge(Li) detector (size 25 cm3

whose relative efficiency was 3.8 %) allowing only use of energy sums and difference, and

the γ-ray intensity balances. The later measurement by Taylor et al. Taylor et al. was

slightly improved (used Ge(Li) detector of size 125 cm3 with relative efficiency 9.5 %),

but still didn’t have γγ coincidence data. Due to the incorrect and double placements,

the established levels and β-feeding patterns are not correctly determined. In general,

we can say that the current β-decay data for 74Ga is incomplete. This fact motivated us to

58



www.manaraa.com

revisit 74Ga β decay with higher statistics data and the best technology/techniques currently

available.

5.3 Experimental Technique

A proton beam with an energy of 54 MeV and average intensity of 10-12 µA was

produced from the Oak Ridge Isochronous Cyclotron (ORIC) and impinged on a uranium

carbide (UCx) target of thickness 6 g/cm2. The fission products were thermalized and ac-

celerated to an energy of about 100 keV, subsequently ionized in a hot plasma ion source

and extracted as positive ions. Isobaric separation of mass A = 74 was achieved using

the low-resolution mass separator (M/∆M = 600) [21]. For this experiment, the charge

exchange cell was not used resulting in a smaller beam spot size and less beam dispersion

which results in a higher effective resolution for the isobar separator ((M/∆M = 10,000).

A purified 74Cu beam was then directed to the Low–energy Radioactive Ion Beam Spec-

troscopy Station (LeRIBSS) [5] and deposited onto a moving tape collector (MTC) in the

center of detector set up which consisted of three HPGe clover γ-ray detectors with collec-

tive efficiency 3.5% at 1.33 MeV and 2 plastic scintillation counters with an efficiency of

about 50%.

The MTC allowed for moving the accumulated source away from the detector region in

order to distinguish the γ rays emitted by nuclides with different half-lives: 74Cu - 1.63(5)

s, 74Zn - 95.6(12) s and 74Ga - 487(7) s. The large difference in the half-lives for this mass

chain made it easy to distinguish them as the source strength built up. During the course of

experiment, four runs were performed. The first run which lasted 309 swas used to identify
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A = 74 mass chain, and observed the excessive amount of 74Zn and 74Ga was not in the

beam. The MTC was then moved to remove the some observed residual contamination

from previous experiment. For the rest of the three runs, we identified no need of MTC

as no member of the decay chain dominates the γ-ray spectra. The second and third run

were performed for 3133 s and 2863 s, respectively which showed 606-keV γ ray from

74Cu have the similar height as of the 596 γ rays from the 74Ga, whose daughter 74Ge is a

stable nuclei. The final run was performed for 1810 s which showed a 50% increase in the

height of 596-keV γ ray to the 606-keV γ ray indicating the slight drift in the beam tune.

Altogether, total run time for this experiment was 8115 s. Only data from three clover

HPGe detectors were used in analysis of the experiment after it was determined that the

fourth HPGe detector was unusable due to radiation damage from previous measurements.

The detectors were coupled with a triggerless data acquisition system using DGF-pixie-16

modules which recorded the energy and absolute time for each γ ray or β particle detected

using a 100 MHz clock (10 ns accuracy) synchronized across all modules [41, 42]. The

time gates of 100 ns were applied in order to construct γγ and βγ coincidences and detect

isomeric transitions following the β decay [73]. This allowed the offline analysis of the

data to established γγ coincidences.

The efficiency calibration of the detector set up was performed using the standard γ

ray sources of 57,60Co, 88Y, 109Cd, 113Sn, 137Cs, 139Ce, 210Po, 226Ra and 241Am for an

energy range 32 keV to 1836 keV. Then result were compared with the efficiency values

determined from previous experiments [52,54] which used the calibrated sources of 133Ba,

152,154,155Eu, 137Cs, 60Co and 226Ra for an energy range 53 keV to 2204 keV, where the
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one defective detector was removed from our current measurement. The results from both

efficiency measurement were in agreement and combined data was used for our efficiency

calibration purpose [110]. Energy calibration was extended up to 5 MeV by comparing the

behaviour of the similar systems available in literature [66, 84, 92].

First round of energy calibration was done using the clean and strong γ-rays peaks

between 89 keV to 3232 keV which are already known from different measurement. Then

the calibration was extend to higher energy range up to 4289 keV by using the SEP and

DEP peaks as explained in Chapter 4.

5.4 Experimental Results

Figure 5.2 shows the γ-ray singles spectrum for the A = 74 isobar chain. The energy

spectrum was generated by summing over all 12 Germanium crystals and for all data runs

at a resolution of 0.4 keV/channel covering the energy range from 20 keV to 5200 keV. We

applied the Gaussian function fit for all potential γ-ray peaks seen in the spectrum using

the RadWare program gf3 to determine the centroids and areas. This information was fed

into the program MASTER along with energy and efficiency calibrations information to

obtain energy and relative intensities. We have used the coincidence data as a primary

source of information for assigning the γ ray to a particular element. For weak γ rays,

we have utilized the β detection efficiency to identified them even they do not show any

coincidence information. We identified a total of 109 γ rays associated with 74Ga β decay

(see Table 5.1) of which 595.85-keV γ ray was found to be the strongest and all other γ-ray

intensities were normalized to this γ ray.
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Figure 5.2: Summed γ-ray singles spectrum for all four data runs obtained at LeRIBSS

from a purified 74Cu beam in the energy range from 175 keV to 4 MeV. The γ-ray peaks

associated with 74Ga decay are marked with their energy. The other two members of the

decay chain are indicated as 74Cu: � (solid diamond) and 74Zn: O (lower triangle). Single

and double escape peak are denoted as S and D, respectively, and background by ◦ (empty

circle). The energy range focuses on the γ rays associated with 74Ga. Prominent γ rays

from 74Zn and 74Cu are presented above 175 keV and below 4 MeV, respectively.

62



www.manaraa.com

Table 5.1: Intensity and coincidence information of γ rays associated to 74Ga β decay
(probable coincidences are indicated with parentheses).

Energy Intensity Placement γγ-Coincidences
180.83(15)e 0.19(2) (2353)
233.90(15) 0.16(2) 1697.16 (596), (608), 868
259.39(13)b,c 0.11(3) 2949.37 (2690)
300.43(10) 0.29(3) 3175.42 (2279)
463.3(3)e 0.09(3) (1890)
468.68(28)a 0.15(3) 2165.22 (1101)
471.04(10)b 0.41(3) 3140.43 (596), (868), (1206), 2073
484.8(14)b,c 0.06(3) 1967.1 596, 887
484.98(9)a,c 0.89(3) 3175.42 2690
492.920(13) 5.62(4) 1697.16 596, 608, (999), 1132, 1178, 1204, (1252),

1337, 1443, 1479, (1574), 1781, (1807),
2000, (2023), 2131, 2198, 2504

497.54(3) 1.10(3) 3034.02 596, (1204), 1332, 1941
503.4(5)b,c 0.06(3) 1967.1 (868)
520.37(24) 0.25(4) 3696.4 (639)
540.39(15)b 0.21(3) 3140.43 2004
544.48(23)b 0.14(3) 3080.95 (1332)
551.48(12)b 0.26(3) 2248.64 (596), (1101)
595.848(11) 100.00(12) 595.84 (469), 471, 485, 493, 498, 541, 544, 551, 604,

608, 639, 702, 715, 785, (809), 837, 868, 887,
943, 961, 969, 975, 994, (999), 1025, 1101,
1132, 1160, (1178), 1183, 1205, (1313),
1332, 1338, 1358, 1443, (1472), 1480, 1490,
1570, (1574), (1602), 1677, 1745, 1830,
1843, 1888, 1941, 2014, (2067), (2073),
2098, 2139,(2233), 2257, 2279, 2354, 2438,
2504, 2580, (2737), 2747, 2786, 2791, 2970,
(3032), 3211, 3233, 3298, 3354, 3605, 3763

603.99(5) 3.65(20) 3140.43 596, (608), (1204), 1331, 1941
608.442(12) 18.14(8) 1204.25 493, 596, (604), (785), (868), 943, 961, 994,

1332, 1338, 1443, 1490, 1745, 1830, 2139
638.93(4) 0.89(3) 3175.42 521, 596, 1332, 1941
701.54(4) 0.86(3) 2165.22 596, 868, (975), (1313), (1338), (1556)
715.06(12) 0.26(2) 2197.97 596, 887, 943
734.28(21) 0.15(2) 2197.97 868, 943
784.27(11)b,c 1.11(33) 3478.14 (596), (1204), 1490
809.24(19)b 0.29(4) 3478.14 (596), 1205

Continued on next page
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Table 5.1 – continued from previous page

Energy Intensity Placement γγ-Coincidences
836.1(8)a,c 0.30(11) 3034.02 994, (2197)
867.832(15) 8.73(5) 1463.68 234, 471, (504), 596, 702, (734), (786), 961,

(975), (1101), (1132), 1206, 1313, (1338),
1472, (1510), (1556), 1570, (1617), 1677,
(1715), (1808), 2015, (2036), 2233, 2257,
(2487), 2737, (2771)

887.04(10) 0.36(3) 1482.89 485, 596, 715, 943, 1207
942.58(7) 1.22(6) 3140.43 596, (608), (715), (735), (887), 994, (1204),

1602, 2198
960.87(8)a,c 1.39(3) 2165.22 596, 608, (975), 1204, 1313, 1338, (1556)
961.07(8)c 0.28(5) 2424.74 596, 868, (943)
967.1(5)a,c 0.27(6) 3503.26 (596), 1941
974.75(29) 0.23(4) 3140.43 702, (868), (961)
993.82(5) 0.77(3) 2197.97 596, (608), 837, 943, 1204, (1443)
999.2(3)b,c 0.35(8) 2696.37 (493), (596), 1024
1023.8(9)b,c 0.12(6) 3720.48 (596), 999, (1204)
1101.307(20) 5.38(4) 1697.16 (468), (551), 596, (868), 1132, (1178),

(1252), 1337, 1443, (1479), (1574), 2000,
(2130), 2198, 2504

1131.64(14)b 0.92(12) 2828.8 493, (596), 1101, (1204)
1159.88(5) 0.87(3) 3696.4 596, (1204), 1332, 1941
1177.79(18)b 0.26(3) 2874.88 493, (1101), (1204)
1183.89(4) 0.34(14) 3720.48 (596), 1941
1201.1(3)a 0.24(5) 3894.48 1490, 1941
1204.210(22) 8.04(9) 1204.25 493, (498), (785), (868), (943), 961, 994,

(1132), (1159), (1313), 1332, (1338), 1443,
1490, 1745, 1830, 1888, 2139, 2504

1205.2(5)a,c 0.39(6) 2669.25 (471), (485), (868)
1252.1(4)a 0.13(4) 2949.37 493, (1101), (1204)
1256.9(3)e 0.17(3) (596), (1204)
1312.88(9) 0.60(3) 3478.14 (596), 702, (868), 961, 1204
1332.28(12)c 1.45(13) 2536.51 498, (545), 596, (604), 608, 639, 1160, 1204,

(1358)
1336.68(11)c 1.33(13) 3034.02 493, 596, 608, 1101, 1204
1337.5(4)a,c 0.43(8) 3503.26 596, 608, (702), 961
1358.04(15) 0.34(3) 3894.48 (596),(1204), (1332), 1941
1443.31(3) 3.84(6) 3140.43 493, 596, 608, (994), 1101, 1201, 1204,

(1698)
1471.96(15)b 0.36(4) 2935.63 (762), (785), 868

Continued on next page
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Table 5.1 – continued from previous page

Energy Intensity Placement γγ-Coincidences
1478.43(19) 0.28(4) 3175.42 493, 596, 1101, (1204)
1489.39(4) 2.95(6) 2693.64 596, (608), 785, (1201), 1204
1509.86(25) 0.22(3) 2973.54 596, 869, 1205
1555.73(29)a 0.19(3) 3720.48 (702), (868), (961)
1570.24(7) 1.03(4) 3034.02 596, 868
1574.18(18)a 0.34(3) 3271.34 (493), (596), (1102)
1601.90(18) 0.31(3) 2197.97 (596), (638), 943, (1204)
1616.7(9)b,c 0.17(5) 3080.95 868
1676.34(7) 1.05(4) 3140.43 596, 868
1745.10(5) 4.84(16) 2949.37 596, 608, (972), 1204
1780.7(7)a 0.09(4) 3478.14 (493)
1806.1(6)c,d 0.19(5) 3271.34 (868)
1806.9(6)c,d 0.27(13) 3503.26 (493)
1829.76(5) 2.21(5) 3034.02 596, 609, 1204
1852.03(24)e 0.36(4)
1887.79(17)a 0.46(4) 3092.01 (596), 608, 1204
1940.71(4) 5.39(6) 2536.51 (470), 498, 596, 604, 639, 969, 1160, 1183,

1202, 1358
1970.87(73)e 0.10(4)
1999.78(19) 0.44(4) 3696.4 493,(596), (608), 1101
2004.17(26)b 0.34(4) 2600.03 540, (967)
2014.55(8) 1.35(5) 3478.14 596, 868
2023.18(25) 0.33(4) 3720.48 493, 596
2036.4(4) 0.21(4) 4201.04 (702), 868
2069.1(5)e 0.19(5)
2073.26(29)b 0.31(5) 2669.25 471, (596)
2097.68(9) 1.10(6) 2693.64 (452), 596, (785)
2130.3(14)c 0.16(8) 3827.2 (493), 1101
2138.45(10) 0.89(5) 3342.71 (596), (608), 1204
2197.5(7)c 0.33(6) 3894.48 (493), (1101)
2198.0(4)c 0.60(5) 2197.97 (837), 943
2231.2(15)c,e 0.16(4)
2257.06(6) 1.71(4) 3720.48 596, 868
2278.99(6)b 2.28(5) 2874.88 (301), 596
2353.51(5) 45.49(13) 2949.37 180, 596
2438.33(11) 0.78(4) 3034.02 (596)
2486.5(4) 0.15(3) 3949.66 (595), (868)
2503.75(17) 0.82(5) 4201.04 493, (596), 1101, 1204
2579.50(15) 1.05(10) 3175.42 596

Continued on next page
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Table 5.1 – continued from previous page

Energy Intensity Placement γγ-Coincidences
2617.3(5)e 0.2(1) (596)
2690.35(10)b 1.05(4) 2690.31 259, 485
2736.9(5) 0.15(3) 4201.04 (596), (868)
2746.89(11) 0.92(4) 3342.71 596
2771.2(3)b 0.22(3) 4234.98 (596), 868
2785.64(13) 0.75(4) 3381.47 596
2790.55(14) 0.67(4) 3386.39
2949.23(15) 0.61(3) 2949.37 596
2970.38(12) 1.13(4) 3566.22 596
3031.0(4) 0.16(3) 4234.98 (596)
3091.95(24) 0.51(5) 3092.01
3210.89(16) 0.74(4) 3806.73 596
3231.3(5)c 0.54(8) 3827.2 596
3298.39(21) 0.46(3) 3894.48 596
3353.75(17) 0.84(4) 3949.66 596
3487.6(5)e 0.16(3)
3605.33(23) 0.51(4) 4201.04 596
3639.5(3)b 0.26(3) 4234.98 (596)
3763.2(5)d 0.14(4) 4359.05 596
a Newly observed γ ray.
b γ ray with different placement.
c γ ray energy and intensity determined from γγ coincident data.
d Previously observed γ ray in β-decay measurement [24, 106] but has not assigned to decay scheme.
e Unplaced γ ray.

5.4.1 Development of Decay Scheme

We set a coincidence gate on each γ-ray peak in the spectrum and generated the co-

incidence spectrum as explained in Chapter 4. Care was taken to set the background gate

to remove all contamination. A visual inspection was made to identified possible coinci-

dences. For the identified peaks, the statistical significance factor was determined. This
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Figure 5.3: Portion of the γ-ray singles spectrum showing the gf3 fit of the primary γ rays

from 74Ga and 74Cu, 596 and 606 keV, respectively. Also, observed are the weaker 604-

and 608-keV γ rays from 74Ga decay which could be separated in the fit from the much

stronger 606-keV γ ray.

yields the γγ coincidence information in Table 5.1. If indicated by the coincidence data,

additional γ rays were added to the list of assigned γ rays.

We placed the 596-keV γ ray as feeding the ground state and began constructing the

decay scheme with 596-keV level based on the coincidences information. The preliminary

decay scheme was developed based on the definite coincidences. Finally, we filled in the

decay scheme with weaker transitions where the coincidence information is not as strong

and attempted to place all the observed γ rays in the decay scheme.

All the γ rays assigned to the structure of 74Ge are listed in the Table 5.1. The decay

scheme proposed in Fig. 5.4 and 5.5 was constructed on the basis of observed statistically
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significant γγ coincidences measurements. Figure 5.3 shows a zoomed in portion of the

γ-ray singles spectrum showing the peaks at 596, 604, 606 and 608 keV along with the

Gaussian function fit obtained using gf3. Compound γ-ray peaks were isolated to predict

their corresponding energy and intensity.

5.4.2 Placement of 471-keV γ ray: An Example of Fixing the Database

A 471-keV γ ray with a relative intensity of 0.42(5)% was reported for the decay of

74Ga by Taylor et al. [106], but was not observed in the earlier experiment by Camp et

al. [24]. Taylor et al. [106] placed this transition as de-exciting the level at 3950 keV and

feeding the level at 3478 keV (Fig. 5.8 a). For this placement, the strongest γγ coincidence

would be with the 2014-keV γ ray. By setting a gate on the 471-keV γ peak, the spectrum

of coincident γ rays shown in Fig. 5.6 was obtained. However, visual inspection alone can’t

determine if all the observed peaks in the spectrum are real coincidences or if they are just

the residue from incorrect background subtraction. To determine the real coincidences, the

statistical significant factor (S) explained in Chapter 4 was determined for each coincidence

peak in the spectrum. The information from this analysis is listed in Table 5.2 while Fig.5.7

shows the analysis for four identified coincidences.

As evident in Fig. 5.7 and Table 5.2, we do not see any evidence for a 2014-keV

γ ray in coincidence with 471-keV γ ray. Instead, as shown in the Fig. 5.6 and Fig.

5.7, we observed the 471-keV γ ray to be in statistically significant coincidence with four

transitions of energy 596, 868, 1205 and 2074 keV. These observations firmly establish

this γ ray as de-exciting the level at 3140 keV and feeding the 2669-keV level where the
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Figure 5.4: Part (a) of the proposed decay scheme for 74Ga to excited states in 74Ge show-

ing low energy transitions.
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Figure 5.5: Part (b) of the proposed decay scheme for 74Ga to excited states in 74Ge show-

ing high energy transitions.
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Figure 5.6: Background-subtracted γγ coincidence spectra obtained for a coincidence gate

set on the 471 keV γ-ray peak. Energy of all possible coincidence peaks are indicated.

strongest de-exciting γ ray is at 2073 keV. This is further supported by the observations of

the 471-keV γ ray in definite coincidence with the 2073-keV gate as shown in Fig. 5.8.

Table 5.2: γ rays in coincidence with the 471-keV γ ray
Energy Peak area(error) Background area(error) S-value Comments

56.8 81(18) 74(20) 0.3 No
141.6 97(18) 116(23) -0.6 No
596.0 431(29) 316(24) 3.0 May be
606.2 425(29) 414(27) 0.3 No
812.2 83(11) 73(10) 0.7 No
868.0 95(11) 62(9) 2.3 May be
1064.2 82(9) 100(10) -1.3 No
1493.0 30(5) 28(6) 0.3 No
1138.2 82(9) 57(9) 2.0 May be∗∗

1205.4 57(8) 30(7) 2.7 May be
2073.8 29(5) 7(1) 3.9 Yes
2354.1 52(7) 41(6) 1.2 No
∗∗ Removed from the fact it is not seen in mutual coincidences

71



www.manaraa.com

Figure 5.7: Selected region of coincidence spectra for gated 471 keV γ-ray peak showing

peak (black), background (red) and difference (blue) spectra. Each γ-ray peaks are marked

with energy and calculated statistical significant factor (S).

This is just one example of many within the previously published decay schemes where

incorrect placements and double placements were corrected.

5.4.3 74Ga Decay Scheme

Following the procedure explained above, we have generated the coincidence file for

all possible peaks seen associated with 74Ga β decay and have developed a proposed decay

scheme. The proposed decay scheme contains 43 excited states into which 101 γ-rays
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Figure 5.8: Decay scheme showing the correct placement of 471-keV γ-ray transition. Fig.

a represents part of the decay scheme showing the placement of 471-keV γ ray by Taylor

et al. [106] while the Fig. b is its corrected placement from current statistically significant

γγ coincidence analysis.

transition have been placed. The total number of γ rays observed here is about 15% more

than listed in the NNDC database [6], with the highest excited state at 4359 keV. Up to 2.6

MeV, our proposed decay scheme is in good agreement with the previous measurements

by Camp et al. and Taylor et al [24, 106]. However, above 2.6MeV we have adjusted

the placement of several γ rays. The 21 γ rays for which we have a different placement

from the two previous studies are indicated by footnote b in Table 5.1. Thirteen γ rays

which were reported in one or both of the previous studies were not observed. The γ-ray

energies are 444, 653, 1631, 2110, 2617, 2625, 2997, 3044, 3274, 3627, 3717, 3895 and
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Figure 5.9: Background-subtracted γγ coincidence spectra for coincidence gates set on

485-, 961-, 1337- and 2198-keV peaks.

3992 keV. These γ ray cannot be removed from the database, but we have no evidence for

their placement.

We have proposed 15 new energy levels in β decay out of which 8 energy levels were

observed and cataloged in the NNDC database by other types of measurements [6]. Three

totally new energy levels are proposed by multiple coincidence relationships, the other

four levels are placed based on a single coincident γ ray. We have less confidence in the

later two levels and represent them by a dotted line in the decay scheme. We identified 23
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new γ rays associated with this decay scheme which are designated by footnote a in Table

5.1. Furthermore, we resolved five γ-ray doublets of energy 485, 961, 1337, 1807 and

2198 keV where both γ ray belongs to 74Ga β decay and assigned the proper intensity to

each. The background subtracted γγ coincidence spectra for γ-ray peaks 485, 961, 1337

and 2198 keV are shown in Fig. 5.9 showing the coincident γ-ray peaks which indicate

they are doublets. For example, the top most spectra of Fig. 5.9 shows 887- and 2691-

keV γ rays are not in coincidence, but must be parallel to each other in the decay scheme.

We identified additional γ-rays doublets which belong to 74Ga as well as another member

of decay elements of the decay chain. These include γ rays of energy 785, 837, 999 and

2031 keV belong to 74Zn, and 967 keV which belongs to 74Cu and determined the intensity

associated with each decay. Furthermore, we observed that 1464-keV γ ray in the spectrum

which we identify as a sum peak from the 596- and 867-keV coincident γ rays. Below is

the description of the new levels proposed form this work:

5.4.3.1 Description of New Levels From the Present Study

Our coincidence analysis supports the existence of 15 energy levels which are not re-

ported in the previous two studies [24, 106]. Details on the new levels are discussed in the

following paragraphs.

An energy level at 1967.1 keV is proposed by placing the two newly identified γ rays

of energies 484.83 keV feeding the level at 1482.89 keV and 503.38 keV feeding the level

at 1463.68 keV. We observed that the 484.83-keV γ ray is in definite coincidences with the
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887-keV γ ray while the 503.38-keV γ ray is in probable coincidences with the 868-keV γ

ray leading to their placements as de-exciting the new level at 1967.1 keV.

A level at 2248.64 keV is proposed by placing a single γ-ray transition of energy 551.48

keV. In the 551.48-keV coincidence gate, the 551.48-keV γ ray is observed in probable

coincidences with the 596- and 1101-keV γ rays but none of the γ rays de-exciting the

3342.97-keV level reported by Taylor et al. [106]. The 551-keV γ ray is observed in both

the 596- (definite) and 1101-keV (probable) coincidence gates. Since the 2248.64-keV

level is proposed based on a single transition with probable coincidences, we marked it

with a dotted line in the decay scheme.

An energy level at 2424.74 keV is proposed by the placement of a 961.07-keV γ ray

feeding the 1463.68-keV level. The 961.07-keV γ ray is observed in definite coincidence

with the 596- and 868-keV γ rays leading its placement feeding the 1464-keV level. We

have represented the 2424.74-keV level by a solid line because the placement of 961-keV

γ ray is based on definite coincidences in both directions.

An energy level at 2600.03 keV is proposed by placing the 2004.17-keV γ ray feeding

the at 595.84-keV level. The 2004.17-keV γ ray is observed in definite coincidences with

the 540.39-keV γ ray but not any of the γ rays de-exciting the 4201.1-keV level reported

by Taylor et al. [106]. Furthermore, the 540.39-keV γ ray is observed feeding the 2600.03-

keV level with definite coincidences with 2004.17-keV (but not the any γ rays de-exciting

the level 3715.5 keV as reported by Taylor et al. [106]). Hence, our data support that there

is a level at 2600.03 keV.
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An energy level at 2669.25 keV is proposed form this work by placing two γ rays of

energies 2073.26 keV feeding the 595.84-keV level and 1205.17 keV feeding the 1463.68-

keV level. We observed a 2073.26-keV γ ray in definite coincidence with 471-keV γ ray

and not any of the γ rays de-exciting the level at 3950.0 keV Ref. [106], leading its place-

ment de-exciting the level at 2669.25 keV. Furthermore, a 1205.17-keV γ ray is observed in

definite coincidences with 867.83-keV γ ray leading its placements to the level at 2669.25

keV. Consequently, our data suggest that there is a level at 2669.25 keV.

An energy level at 2690.31 keV is proposed by placing a γ ray of energy 2690.35

keV feeding the ground state. In this work, we observed a 2690.35-keV γ ray which is in

definite coincidence with 259.39 keV and 484.98-keV γ rays but not any of the γ rays de-

exciting the 1204.25-keV level as reported by Taylor et al. [106]. Hence, our data support

the existence of the level at 2690.32 keV.

An energy level at 2828.80 keV is proposed by placing the 1131.64-keV γ ray feeding

the 1697.16-keV level. We observe a 1131.64-keV γ ray which is in definite coincidences

with 492.92- and 1101.31-keV γ rays but not any of the γ ray de-exciting the 3566.77-keV

level as reported by Camp et al. [24].

An energy level at 2874.88 keV is proposed by the placement of two γ rays of ener-

gies 1177.79 keV feeding the 1697.16-keV level and 2278.99 keV feeding the 595.84-keV

level. We observed a 1177.79-keV γ ray in definite coincidences with 492.92-keV γ ray

but not any of the γ rays de-exciting the 2165.27-keV level as reported by Camp et al.

and Taylor et al. [24, 106]. Furthermore, an observed 2278.99-keV γ ray shows a definite

coincidence with 596-keV γ ray but not any of the γ rays de-exciting the 3976.1-keV level
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reported by both Ref. [24, 106]. Consequently, our data support that there is a level at

2874.88 keV.

An energy level at 2935.63 keV is proposed by placing a single γ ray of energy 1471.96

keV feeding the 1463.68-keV level. We observed a 1471.96-keV γ ray which is in definite

coincidences with 867.83-keV γ ray but not any of the γ rays de-exciting the level 3140.45

keV leading its placement to the 2935.63-keV level.

An energy level at 3092.01 keV is proposed by placing the γ ray of energy 1887.79

keV feeding the 1204.25-keV level. In this work, we observed a 1887.79-keV γ ray which

is in definite coincidence with 1204- and 608-keV γ rays leading its placement to the

3092.01-keV level.

An energy level at 3381.47 keV is proposed by placing the γ ray of energy 2785.64-

keV feeding the 595.84-keV level. We observed a 2785.64-keV γ ray which is in definite

coincidence with 595.85-keV γ ray leading its placement to the 3381.47-keV level. This

level is in agreement with NNDC evaluators (n, γ) study [6].

Similarly, an energy level at 3386.39 keV is proposed by placing the γ ray of energy

2790.55 keV feeding the 595.84-keV level. We observed that 2790.55-keV γ ray is in

definite coincidences with 595.85-keV γ ray but not any of the γ rays de-exciting the

1204.25-keV level as reported by Taylor et al. [106], leading its placement to the 3386.39-

keV level.

An energy level at 3503.26 keV is firmly proposed by placing the γ rays of energies

1806.10 keV feeding the 1463.68-keV level, 1337.47 keV feeding the 2165.22 keV level

and 697.07 keV feeding the 2536.51-keV level. The 1806.10-keV γ ray was reported by
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both previous measurements [24, 106] but hasn’t placed them in the decay scheme. We

observed a 1806.10-keV γ ray in probable coincidences with 868-keV γ ray leading its

placement to the 3503.26-keV level. Furthermore, a 1337.47-keV γ ray is observed in

definite coincidences with 961.07-keV γ ray leading its placement to the 3503.26-keV

level. Besides that, a 967.07-keV γ ray is observed in definite coincidences with 1940.71-

keV γ rays leading its placement to the 3503.26-keV level. Consequently, our data suggest

that there is a level at 3503.26 keV.

Finally, the level at 4359.05 keV is proposed by placing the γ ray of energy 3763.21

keV feeding the 595.84-keV level. A 3762.6-keV γ ray was observed from both previous

measurements [24, 106] but has not placed in the decay scheme. We observed a 3763.21-

keV γ ray which is in definite coincidences with 596-keV γ ray leading its placement to

the level at 4359.05 keV.

Additionally, we identified the 10 more γ rays associated with the 74Ga decay but could

not place them in the decay scheme whose intensity and coincidence information are listed

in Table 5.1 with footnotes e. The total summed intensity of the unplaced γ ray is observed

to be 1.80(15) relative to the intensity of the 595.84-keV γ ray.

5.4.3.2 Description of Previously Reported Levels Which are not Observed in the
Current Study

Our results do not support the existence of 10 energy levels reported in the previous

two studies [24,106]. Details of those levels which are refuted by our results are discussed

in the following paragraphs.
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An energy level at 2821.6 keV was proposed by Camp et al. [24] by the placement of

γ rays with energies 1617.2 keV feeding the 1204.25-keV level and 1357.19 keV feeding

the 1463.72-keV level. In the present work, we observe a 1616.7-keV γ ray which is in

definite coincidence with the 868-keV γ ray and not with either the 608- or 1204-keV γ

rays de-exciting the 1204.25-keV level. Therefore, we placed the 1617-keV γ ray as de-

exciting the level 3081-keV level. Furthermore, an observed 1358.04-keV γ ray is not

observed to be in coincidence with any γ rays depopulating the 1463.72-keV level but

is in definite coincidence with the 1941-keV γ ray which supports it’s placement as de-

exciting the 3894.48-keV level. Consequently, our data suggest that there is no evidence

for 2821.6-keV level.

Taylor et al. [106] proposed a 3211.9-keV level by the placement of γ rays of energies

2616.6 keV (Iγ = 0.19(8)) feeding the 595.85-keV level and 3211.4 keV (Iγ = 0.70(8))

feeding the ground state [106]. Camp et al. [24] also observed both γ rays (2616.8 keV, Iγ

= 0.26(2) and 3211.10 keV (Iγ = 0.81(2)), did not placed 2626.68-keV γ ray in the decay

scheme while placed 3211.10-keV γ ray de-exciting the level at 3807.0 keV [24]. In our

study, we observed a 2617.3-keV γ ray in the ungated singles spectrum but is not evident in

the β-gated spectrum. This γ ray is also observed not evident in the 596-keV coincidence

gate where an upper limit on the relative intensity 0.12 can be set. Hence, we observe

no conclusive evidence for this γ ray, and certainly nor for the proposed placement. An

observed 3210.89-keV γ ray (Iγ = 0.74(4)) shows a definite coincidence with the 596-keV

γ ray and is placed de-exciting the 3806-keV level which agreed with the Camp et al. [24]

placement. Hence, our data does not support the existence of 3211.9-keV level.
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An energy level at 3716.8 keV was proposed with the placement of γ rays with energies

of 540.8 keV feeding the 3175.75-keV level and 3717.1 keV feeding the ground state

by Taylor et al. [106]. In our present work, we observed a 540.39-keV γ ray which is

in definite coincidence with the 2004-keV γ ray and not with either the 1331.1-keV or

the 1940.63-keV γ rays which de-exciting the 2356.54-keV level. Our result, therefore,

indicates this γ ray placement as de-exciting the 3716.8-keV level. Furthermore, Taylor et

al. reported a very weak γ ray of energy 3717.1 keV and intensity 0.03 directly feeding

the ground state. A γ ray of this intensity is below the detection limit for our system, so we

can make no claims about its existences. Hence, we observe no evidence for a 3716.8-keV

level.

A level at 3976.1 keV was proposed by the placement of γ rays with energies of 2771.8

keV feeding the 1204-keV level and 2279.05 keV feeding the 1697.19-keV level in both

previous studies [24, 106]. In the present work, we observe a 2271.8-keV γ ray which is

in definite coincidence with the 868-keV γ ray and not the 608-keV γ ray as would be

expected it the γ ray fed the 1204-keV level. Instead, we place the γ ray as de-exciting a

level at 4234.98 keV. Furthermore, an observed 2278.99-keV γ ray shows only a definite

coincidence with the 596-keV γ ray with no observed coincidences with the 492- and 1101-

keV γ rays de-exciting the 1697-keV level. Therefore, this γ ray is placed as de-exciting a

level at 2874.88 keV. Consequently, our data suggest that there is no level at 3976.1 keV.

A level at 3995.1 keV was proposed by placing γ rays with energies 2790.38 keV

feeding the 1204.25-keV level and 3992.4 keV feeding directly to the ground state by the

Taylor et al. [106]. In the present work, we observed a 2790.55-keV γ ray which shows
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no evidence for any coincidences with γ rays de-exciting the 1204.25-keV level. Instead,

it shows the 596-keV γ ray in definite coincidences. Therefore, we placed this γ ray as

de-exciting the 3386.39-keV level. Finally, we did not observe the 3992.4-keV γ ray in

our spectra, but it is also below our detection limit. Thus, our data suggest that there is no

level at 2995.1 keV.

A 4223.8-keV energy level was proposed by placing γ rays of energies 3018.8 keV

(Iγ = 0.07(1)) feeding the 1204.25-keV level and 3626.7 keV (Iγ = 0.036(5)) feeding the

595.85-keV level in Taylor et al. [106]. In our present work, we observed a 3018.75-keV

γ ray with intensity 0.16(3) which has been assigned to 74Cu β decay based on β detection

efficiency and cannot be the same γ ray observed previously. There is no evidence in the

3019-keV coincidence gate for coincidences with the 608- and 1204-keV γ rays, nor is

the 3019-keV γ ray is observed in the 596-, 608-, or 1204-keV coincidence gates. We

could not observe the 3628.0-keV γ ray of energy in our spectrum because it is below our

detection limit. Hence, our data provide no evidence to support a level at 4223.8 keV.

An energy level at 4367.3 keV was proposed by placing the γ rays of energies 1024.3

keV (Iγ = 0.15(3)) feeding the 3342.97-keV level and 1417.6 keV (Iγ = 0.12(11)) feeding

the 2949.52-keV level in Camp et al. [106]. In the present work, we observed a 1023.8-

keV γ ray (Iγ = 0.12(6)) which is in definite coincidences with the 999-keV γ ray and not

the 1177.99-, 2138.45- or 2746.89-keV γ rays which de-exciting the level at 3342.97-keV

leading us to place this γ ray as feeding the 2696.37-keV level (This disagrees with both

proposed placements for this γ ray reported at the NNDC). We observe a 1417.4-keV γ ray

(Iγ = 0.11(4)) in our spectra. But the β detection efficiency suggest this γ ray is from 74Cu
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and not the one reported previously. Coincidence gates on 1417 keV and 2354 keV show

no evidence for a component of the 1417-keV peak matching the proposed placement.

Hence, our data suggest no evidence to support a level at 4267.3 keV.

A level at 4477.6-keV was proposed by placing five γ rays of energies 999.9 keV (Iγ =

0.28) feeding the 3478.12-keV level, 1134.5 keV (Iγ = 0.42(4)) feeding the 3342.97-keV

level, 1337.18 keV (Iγ = 1.75(4)) feeding the 3140.45-keV level, 1443.38 keV (Iγ = 4.0(8))

feeding the 3034.17-keV level, and 3273.40 keV (Iγ = 0.04(1)) feeding the 1204.25-keV

level in Camp et al. [106]. In the present work, we observed a 999.17-keV γ ray (Iγ =

0.35(8)) which is in definite coincidence with the 1023.77-keV γ ray. Therefore, this γ

ray is placed de-exciting the level at 2696.37 keV (The placement of 999-keV γ ray has

corrected to level 2696.37 keV from 3950.0 keV proposed by Taylor et al). We do not

observed a 1134.0-keV γ ray in our spectrum. Furthermore, we observed a 1443.31-keV

γ ray (Iγ = 3.84(6)) in definite coincidences with the 493-keV and 1101-keV as well as

all transitions below these γ rays indicating it feeds into the 1697-keV level. We observe

no evidence of this γ ray being a doublet. We do not observe a 3274-keV γ ray in our

spectrum because it is below our detection limit. Hence, our data suggests that there is no

level at 4477.62 keV.

A level at 4611.6-keV was proposed by the placement of γ rays of energies 1471.7 keV

feeding the 3140.45-keV level and 2074.14 keV feeding the 2536.54-keV level in Taylor

et al. [106]. From this study, we observed a 1471.96-keV γ ray (Iγ = 0.36(4)) which is in

definite coincidences with the 868-keV γ ray and not with any γ rays de-exciting 3140.45-

keV level, leading its placement feeding the 1464-keV level. Furthermore, a 2073.26-
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keV γ ray (Iγ = 0.31(5)) was observed which is in definite coincidence with the 471-keV

γ ray with no observed coincidences with the γ rays de-exciting the 2536.54-keV level.

Therefore, the 2073.26-keV γ ray is placed de-exciting the level at 2669.25 keV. Hence,

our data do not support the existence of level at 4611.6 keV.

Finally, an energy level at 4698.3 keV was proposed by placing γ rays of energies

1131.52 keV feeding the 3566.77-keV level and 2004.6 keV feeding the 2693.68-keV level

in the Camp et al. [24]. In the present work, we observed a 1131.64-keV γ ray (Iγ =

0.92(12)) which is in definite coincidences with 493-and 1101-keV γ rays but not any

of the γ rays de-exciting the level at 3566.77 keV, leading to its placement as feeding the

1697-keV level. Furthermore, we observed a 2004.17-keV γ ray (Iγ = 0.34(4)) is in definite

coincidence with the 540-keV and not any γ rays de-exciting the level at 2693.68 keV nor

any other γ ray de-exciting the 3140-keV levels. Since the γ ray cannot feed the 3140-keV

level, it must lie below the 540-keV γ ray and is placed de-exciting a level at 2600 keV.

Consequently, our data do not support the existence of level at 4698.3 keV.

5.5 β-Feeding, log (ft) Value and Spin-Parity Assignment

As we do not know the exact number of β decays leading to the observed γ rays, we

initially assign that strongest γ-ray peak of energy 596 keV in the spectrum to have a rel-

ative intensity of 100% and the intensity of all other γ rays associated with 74Ga decay

were determined relative to the intensity of the 595.84-keV γ ray. These are the experi-

mental values given in the Table 5.1. Determination of absolute γ-ray intensities therefore
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will only require determination of a normalization constant specifying the absolute feeding

through the 596-keV γ ray.

After constructing the decay scheme, we have calculated the β-feeding intensity for

each level by subtracting the summed γ-rays intensity feeding in the level form the summed

γ-rays intensity feeding out from that level. We did this relative β-feeding calculations

using the MASTER program. Then the summing correction was performed with k-alpha

X-ray energy 9.86 keV [3].

We observed five γ rays feeding the ground state with a summed relative intensity of

111.07(18). We can assume no ground state feeding of the spin/parity consideration of

the parent (74Ga) and daughter nuclei (74Ge) nuclei. So, the only 11.07% of the ground

state feeding comes from the transitions other than the 596-keV γ ray. The summed inten-

sity sets the normalization factor for the principle 596-keV γ ray to be 90.45(17)%. The

absolute β-feeding intensity for each proposed levels are listed in Table 5.3.

Lower limit log (ft) values for the energy levels in 74Ge, fed in the β decay of 74Ga as

shown in Table. 5.3, were calculated as explained in Chapter 4 using the NNDC webiste

[7]. We have used the Qβ− = 5372.8 keV taken from AME2012 [112] for this calculation.

We did not measure the half-life of 74Ga β decay, but used accepted value from the NNDC

database. Estimated log (ft) lower limits and accepted spin-parity assignments taken from

the NNDC for the proposed energy levels are listed in the Table 5.3.
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Table 5.3: Feeding intensities (Iβ−), log (ft) lower limits and assigned spin-parity values
for 74Ga β decay. The β-feeding values are given per 100 decays.

Energy Level Iβ− log (ft) Spin-parity
0.00 - - 0+

595.84(1) 2.88(47) 8.18 2+

1204.25(1) 4.07(27) 7.77 2+

1463.68(2) 0.36(16) 8.70 4+

1482.89(8) 0.05(5) 9.50 0+

1697.16(2) 0.53(29) 8.40
1967.1(5)† 0.11(4) 8.95 (3)+

2165.22(4) 0.70(13) 8.04 (3, 4)+

2197.97(4) 0.48(14) 8.18 2+

2248.64(12)† 0.25(3) 8.43
2424.74(8)† 0.27(5) 8.29
2536.51(3)◦ 0 >10.65
2600.03(13)‡ 0.12(5) 8.53 (1, 2, 3)+

2669.25(9)‡,◦ 0 >10.00
2690.31(6)‡ 0.05(5) 8.85
2693.64(4) 2.45(34) 7.15 (3, 4+)
2696.37(29)‡ 0.22(10) 8.20 (2)+

2828.80(14)‡ 0.91(12) 7.49 (4+)
2874.88(5)† 2.05(6) 7.10
2935.63(15)‡ 0.34(4) 7.84
2949.37(4) 45.41(20) 5.70 3−

2973.54(25) 0.21(3) 8.02 (3)
3034.03(3) 6.29(18) 6.50 (3, 4+)
3080.95(22) 0.30(5) 7.78 (3+)
3092.01(14)‡ 0.85(6) 7.32 1(+)
3140.43(3) 10.34(22) 6.20 3−

3175.42(4) 2.86(11) 6.73 3−

3271.34(18) 0.34(3) 7.57 (2+)
3342.71(8) 1.64(6) 6.82 (3−, 4+)
3381.47(14)‡ 0.67(3) 7.18 3−

3386.39(14)† 0.59(3) 7.23
3478.14(5) 3.38(33) 6.38 (2, 3)+

3503.26(28)† 0.97(16) 6.9
3566.22(12) 1.01(3) 6.83 (2+, 3, 4+)
3639.52(33) 0.22(3) 7.41
3696.40(6) 1.52(7) 6.52 (3, 4)
3720.49(4) 2.61(16) 6.26 (3, 4+)

Continued on next page
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Table 5.3 – continued from previous page

Energy Level Iβ− log (ft) Spin-parity from NNDC
3806.73(16) 0.66(3) 6.76 3−

3827.2(5) 0.64(11) 6.75 1− to 4+

3894.48(12) 1.29(9) 6.37 (2, 3, 4+)
3949.66(16) 0.89(5) 6.46 (2+, 3, 4+)
4201.04(13) 1.62(8) 5.87 2+

4234.98(25) 0.37(4) 6.46 (3, 4+)
4359.05(52)† 0.12(4) 6.76
◦Feeding to this level was consistent with zero.
†Newly proposed energy level for β decay.
‡Newly proposed energy level for β decay which agreed with other studies [99].

Figure 5.10 shows the Iβ− feeding profile for all three β-decay experiments. In the

present work, low direct β-feeding to the first excited state at 596 keV (2.88 %) is observed

in disagreement with the previous two measurements (Camp: 4.81% and Taylor: 15.11%)

[24, 106]. The observed β-feeding intensity to the 1204-keV level is around 4.07% which

is much greater than reported in previous work (Camp: 0.92%, Taylor: 0.0%). The reason

behind this discrepancy is Taylor et al. placed the 1971-, 2562-, 2691-, 2771-, 2791-, 3019-

and 3030-keV γ rays feeding the 1204-keV level, but our coincidence data clearly do not

support these placements and instead placed them feeding into different states. Almost

zero β-feeding is observed to the 1483-, 2536- and 2669-keV levels which are less than

reported by the previous works [24,106]. The present work observed comparable β-feeding

intensity for the 2949-keV level (Camp: 50.61%, Taylor: 45.87% and present: 45.41%).

For the 3140-keV level, the β-feeding intensity has increased Camp (3.33%) to Taylor

(7.29%) to the present (10.34%). Camp et al. proposed level at 3140 keV by placing the

four γ rays (604.22, 942.45, 974.90 and 1676.62 keV) de-exciting the level with one γ ray
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(809.8 keV) feeding in. Later, Taylor et al. proposed the same level with one additional

1443.4 keV γ rays de-exciting the level. In our measurement, we confirmed the level

at 3140 keV with two more γ rays (471.04 and 540.39 keV) in addition to Taylor et al.

Furthermore, we have adjusted the placement of 809-keV γ ray feeding the level at 3478.14

keV. Hence due to the placement of two addition γ rays and corrected placement of γ ray

has increased the observed higher β feeding intensity at 3140 keV level. In general, we can

say there is higher feeding in the energy range from 2000 to 3000 keV whereas less feeding

to the lower-energy states compared to the previous two experiments [24,106]. This clearly

shows the shifting of β-feeding to the higher levels from the correct understanding of the

γ-ray cascades and coincidences.

5.5.1 Nushellx Calculation and Spin-Parity Assignments

We have calculated the level structure of 74Ge using Nushellx [23] with the JUN45

effective interaction within the JJ44 model space which has been proposed for use in the

fp- and g9/2 orbitals for both protons and neutrons. We have performed the calculations

for spins up to 5 for both positive and negative parity states, determining the first 30 states

for each spin/parity. Figure 5.11 shows the result we obtained. The 2+ and 4+ states

clearly show that the results from the theoretical calculation are slightly stretched up by

about 100 keV in comparison to the experimental results which indicates the need of some

deformation factor in our theoretical model.

In our proposed decay scheme, β-feeding to the 596-keV energy level is reduced

(2.88%) in comparison to the values of 15.11% by Camp et al. followed 4.81% by Tay-
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Figure 5.10: Iβ− feeding profile for 74Ga β decay: comparison from each experiments.

lor et al. Our observed diminishing β-feeding indicates that there is low direct feeding to

the 596-keV level from 74Ga. The spin-parity assignment to the 596-keV level in 74Ge us

known to be 2+ [6] as expected for an even-even nucleus. The β transition from parent

to daughter nuclei for this scenario is 3− to 2+, which is a first forbidden. Therefore, our

lower-limit log (ft) value for the 596-keV level should be between 6.0 to 8.0 (Ref. Table

2.1). The observed value from this present work is 8.18 which is nearly conclusive.

For the 1204.5-keV level, it connects to both the 0+ (ground state) and 2+ (595.85 keV)

state. So, it’s spin/parity should be 2+
1 as agreed with all other measurements [6]. This is
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Figure 5.11: Nushellx prediction of structure of 74Ge.

also a first forbidden transition where our calculated log (ft) lower-limit of 7.77 is in good

agreement with expectations.

The 1463.68-keV level has a well-established spin/parity assignment of 4+. There is no

direct ground state transition from this level and it connects only to the 2+
1 state at a lower

excitation energy. This is also a first forbidden transition where the lower-limit log (ft)

value is 8.70- is high but consistent if there is a poor wave function overlap.

For the 1482.89-keV level, our calculated log (ft) lower-limit of 9.50 is consistent with

a first-forbidden unique transition (J = ±2).
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For the level at 1482.89 keV, our calculated log (ft) value comes to 8.7 leading to the

first unique transition (J = ±2), which is not conclsive from previous 0+ assignment [6].

The 1697.16-keV level has a calculated lower limit of log (ft) value 8.40. As this level

has γ-ray transitions connecting the 2+
1 , 2+

2 and 4+
1 levels suggesting spins from 2 to 4. Our

calculated lower-limit of log (ft) value of 8.40 is consistent with a first forbidden and too

high for an allowed decay. Hence, our results are consistent with the NNDC spin-parity

value.

For the newly established energy level at 1967.1-keV, our calculated lower limit of

log (ft) is 8.95. The level decays by two γ-ray transitions connecting to the level 0+
2 and

4+
1 . Therefore, we predict it’s spin-parity to be (2)+. Nushellx result shows three 2+ states

below 2 MeV, which supports our assignment.

The energy level at 2165.22 keV has γ-ray transitions connecting to the 2+
2 , (31)+ and

4+
1 states but not to any ground 0+ state, and is assigned spin-parity 4+ by Taylor et al. Our

calculated log (ft) value lower-limit comes out to be 8.04, which is in agreement with the

Taylor et al. Our Nushellx result indicate the 4+
2 state lies below the 3+

2 state which further

supports a 4+ assignment.

The 2197.97-keV level is assigned 2+ by multiple experiments. Our log (ft) value

(8.18) for this level is consistent with this spin/parity assignment.

For the 2536.50-keV level, spin-parity assigned by both Camp et al. and Taylor et al.

is 3−. We observed almost zero feeding to this level which gives the large log (ft) value

(>10.65) suggesting the second forbidden transition with change of spin ∆J = ±2 but no

change of parity from the 3− ground states of 74Ga. Hence, our calculated log (ft) value is
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not in agreement with this 3− assignemnt and log (ft) values reported previously (Camp:

7.52, Taylor: 7.99) [24, 106].

The level at 2949 keV is observed to have large β-feeding value. The calculated

log (ft) value for this level is 5.70 indicating allowed transition and have assigned its

spin/parity to be 3−. This is the first low energy negative states confirmed experimentally

from our experiment which is in agreement with Nushellx result shown if Fig 5.11.

5.6 Discussion and Conclusion

In this measurement, we have been able to identify 109 γ rays associated with 74Ga β

decay, placed 99 of them in a proposed decay scheme with 44 levels based on statistically

significant γγ coincidences. This work has modified the placement of 20 γ rays confirmed

the placements of 67 γ rays and 27 energy levels proposed in the previous two β-decay

measurements. Besides that, the present study confirms several additional levels proposed

by the NNDC evaluators based on (n, γ) measurements. Altogether, this work has con-

firmed the placement of 87 γ rays reported in the previous two β-decay measurements.

We have added 15 new levels to the decay scheme of which 9 are in agreement with other

types of measurements [99]. We do not observe 15 γ rays reported in the previous studies

and finally removed 10 possibly erroneous levels based on modified placements of γ rays

as well as un-observed γ rays. Furthermore, we identified 22 new γ rays that belong to

this decay of which 12 γ rays were successfully placed in the decay scheme. With the bet-

ter understanding of the γγ and βγ coincidence information, we have established a more

comprehensive decay scheme for 74Ga nuclei. The feeding intensities and log (ft) values
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were determined for each proposed level and compared with the previous measurements.

Furthermore, shell model-calculations are used for comparison to the observed levels.
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CHAPTER VI

THE β DECAY OF 75GA

6.1 Scientific Motivation

The study of β-decay spectroscopy for exotic nuclide provides important informa-

tion on the nuclear structure and fundamental nuclear astrophysics. Despite previous

spectroscopy efforts, there are substantial gaps in our knowledge of decay properties of

neutron-rich nuclei. Detailed β-decay studies of nuclides in the region around Z = 28 and

N = 28−50, i.e. nuclides in pf5/2g9/2 shell which exhibit interesting behaviors like struc-

ture variation and shell evolution [22, 56], are important in understanding the evolution of

nuclear structure.

In the traditional shell model view of 75Ga, the 31st proton should be in a π2p3/2 orbitals

suggesting the ground state spin-parity Jπ = 3/2−. This prediction was confirmed in a deep

inelastic reaction experiment by Stefanescu et al. [102]. The β-decay study of 75Ga is also

important as it lies near the π2p3/2 − π1f5/2 orbital crossing point. Evolution of the 9/2+,

7/2+ and 5/2− states relative to the 1/2− states in the Ge isotopes with each additional

neutron pair added in the ν1g9/2 states adds special interest to this study. The evolution of

states in the Ge nuclei are consistent with the theoretical calculations which consider the

monopole component of the residual nucleon-nucleon interaction [78].
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The β-decay data currently available for 75Ga in the National Nuclear Database Center

(NNDC) database comes from a study performed in 1973 by Chacko et al. [26]. The

75Ga was produced from the (γ, p) reaction of 76Ge powder which was 73.89% pure, and

had used two Ge(Li) detectors (19 cc and 60 cc) for low and high-energy part of γ-ray

spectrum studies. They observed 37 γ rays associated with this decay and constructed the

decay scheme up to a 2664-keV level, placing 31 γ rays. The Qβ− value of 75Ga is 3.392

MeV, which suggest that there might be some higher-lying energy levels missing. In this

high resolution and higher efficiency investigation of 75Ga, we expect to extend the existing

decay scheme, filling gaps as well as extending the scheme. Also, from the understanding

of the recent work on 74Ga β decay, we assume that we will correct the placement of the

some of the γ rays and energy levels by use of the statistically significant γγ coincidence

technique.

6.2 Experimental Details

Mass A = 75 isobars were produced by proton-induced fission of a uranium carbide

target (UCx) at the HRIBF of ORNL. Isobaric separation was achieved using the low-

resolution mass separator (M/∆M = 600). After passing the beam through a charge ex-

change cell, 75Zn ions were removed from the beam by passing it through the high-resolution

mass separator (M/∆M = 10,000) which also easily separated the 75Ga components of the

beam and provided an essentially pure beam of 75Cu ions. These ions were then passed

to the Low–energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS) [5] and were

deposited onto a moving tape collector (MTC) in the center of the detector set up, which
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Figure 6.1: Saturation spectrum obtained in the LeRIBSS data run with a purified 75Cu

beam in the energy range 25 keV to 3.45 MeV. The γ-ray peaks associated with 75Ga decay

are marked with their energy. Prominent γ rays from other members of the decay chain are

indicated by symbols. 75Cu: � (solid diamond), 75Zn: • (bullet), 74Cu: # (hash), 74Zn: O

(open down-triangle). The room background is denoted by ∗ (asterisk). The energy range

focuses on the γ rays associated with 75Ga.

consisted of four HPGe clovers γ-ray detectors and two plastic scintillation counters. The

clover array has a measured absolute photopeak efficiency of 29% at about 100 keV and

5% at 1.33 MeV.
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Due to the location of LeRIBSS just past the high-resolution mass separator and not

using a post-accelerated beam, the beam intensity obtained was of a factor of 10 more than

previous experiments [116, 117], achieving 2,000 ions/s. The MTC allowed for moving

the accumulated source away from the detector region in order to distinguish the γ rays

emitted by different nuclides with different half-lives: 75Cu (1.22 s), 75Zn (10.2 s), and

75Ga (123 s) [6]. A timing cycle for the MTC of 5 s growth with 7 s delay was used to

maximize the observation of 75Cu [54]. For most of the experiment, while a saturation

spectrum was also obtained. The later spectrum is the focus of this research. Data were

collected using a trigger-less digital data acquisition system which recorded the energy and

absolute time when each γ ray was detected [41, 42]. This allowed offline analysis of the

data to establish γγ coincidences. The total experimental run time was around three hours

including building the saturation spectrum. The primary goal of the experiment was a

precise measurement of the 75Cu decay [54], but it also allowed for detailed studies for the

decays of 75Zn and 75Ga. Detail of the decay scheme for 75Ga is presented in the following

sections.

6.3 Experimental Results

A representative γ-ray singles spectrum including all members of the A = 75 decay

chain starting from 75Cu is shown in Figure 6.1. Efficiency calibration of the detector set

up was done offline with the standard γ-ray sources 133Ba, 152,154,155Eu, 137Cs, 60Co and

226Ra. After energy matching of all the raw spectra, energy calibration of the summed

single spectrum was performed. The Gaussian function fit using the gf3 software was
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performed to obtain centroids and areas for all the γ-ray peaks. From the analysis of the

data, we identified 78 γ rays associated with 75Ga β decay. The initial γ-ray intensities

were normalized with respect to the 253-keV γ ray which is the strongest transition in the

75Ga β decay. After building the decay scheme, as described later, coincidence summing

correction were made to obtain the final relative intensities. Table 6.1 contains the energy,

intensity and γγ coincidences information for the γ rays assigned to the 75Ga β decay.

Using this infromation, decay shceme was constructed. The proposed decay scheme for

75Ga from this work is shown in Fig. 6.2, which contains 30 energy levels into which 72 γ

rays have been placed. We have extended the decay scheme up to 2765 keV from the 2664

keV proposed from previous measurement by Chacko et al [26]. Of the levels proposed

by Chacko et al., we agree with the placement of 12 levels but do not see evidence for

the levels at 584.1, 1222.5 and 2664.4 keV as will be discussed later. We also confirmed

some of the previously proposed states observed in other types of experiment by placing

previously unobserved γ rays de-exciting those levels. Details on the decay scheme are

presented in the following section.
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Table 6.1: Energy, intensity, placement and coincidence information for γ rays associated
with 75Ga β decay (probable coincidences are indicated with parentheses).

Energy Intensity Placement γγ-Coincidences
52.23(2)‡ 1.31(8) 192.63 124
118.62(16)‡ 0.21(3) 1359.47 666
124.31(8)b 1.87(3) 317.29 (335), 568, 583, (820), (924), (1018), 1183
139.45(8) 8.12(3) 140.03
177.03(8) 11.42(4) 317.29 335, 365, 445, 568, 583, 820, 924, (951), 1036,

1183, 1285
203.81(7) 5.10(3) 457.21 253, 444, 783, 1045, (1341), 1544
253.08(7) 100.00(15) 253 204, (311), 322, 340, 444, (616), 632, 647, 783,

884, 927, 988, 1043, 1045, 1101, 1176, 1249,
1350, 1545, (1802), 1899, 2105

310.64(7) 7.90(3) 885.6 253, 322, 575, 616
316.95(7) 4.95(3) 317.29 (365), 568, 583, 820, (849), 924, 1183, 1285,

(1899)
321.68(7) 3.16(3) 574.58 253, 311, 562, 854, 927, 1182, 1223
325.72(8)a 0.72(3) 900.57 (340), 575
334.62(8)a 0.68(3) 652.08 (124), 177, 317, 589, 849, 951
339.96(10)a,‡ 0.30(3) 1101.48 (444), 761
340.16(10)a,‡ 0.19(3) 1240.85 (326), (583), 647
365.02(8)a 0.77(3) 1501.79 (177), (457), (562), (575), (680), 820, 884,

1137
382.28(8)a 0.94(4) 839.19 457, 661, (763), 927
401.3(5) 0.13(5) 1240.85 382, (457)
443.53(7)b,‡ 0.55(4) 900.57 204, 253, (340), 457
444.68(7)‡ 0.28(5) 761.52 177, 543, 656, 917, 1018, 1036
457.12(6) 6.21(3) 457.21 365, 382, 444, (661), (680), 783, 1045, 1341,

1544
542.77(21)a 0.15(2) 1304.3 445
562.38(13)† 0.20(2) 1136.95 (322), (365), 575
568.39(6) 2.26(3) 885.6 124, 177, 317, (616)
574.78(6) 40.96(13) 574.58 311, 326, 562, (616), 666, 842, 854, 927, 1223,

1426
583.32(6)b 2.07(3) 900.57 (124), 177, 317, (340), 661
589.1(5)c,‡ 0.6(2) 335
616.44(7)a 0.85(3) 1501.79 311, (575), 632, 886
632.29(6) 8.27(4) 885.6 253, 616 , 1802
647.45(6)b 2.96(3) 900.57 253, 340, 1101
655.57(28)a 0.14(3) 1416.18 445

Continued on next page
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Table 6.1 – Continued from previous page

Energy Intensity Placement γγ-Coincidences
660.58(21)a 0.16(3) 1500.00 (382), (457), (583)
666.14(7)† 1.37(4) 1240.85 119, 575
680.15(18)† 0.19(3) 1136.95 (365), 457
761.01(6) 1.48(3) 761.52 340, 1036
763.00(6) 0.10(1) 1602.64 (382)
783.43(7)‡ 1.37(5) 1240.85 204, 253, 457
820.14(9)† 0.46(3) 1136.95 (124), 177, 317, 365
841.69(6)†,‡ 0.16(2) 1416.18 575
849.42(8)a 0.72(3) 1501.79 (177), (317), 335
853.7(7)a 0.87(3) 1428.44 575
863.44(12)c,‡ 0.47(3)
883.87(5)†,‡ 0.14(3) 1136.95 (253), (365)
885.87(5)‡ 14.48(6) 885.6 616, 911
911.19(6) 0.19(4) 1797.62 886
917.30(37)a 0.09(3) 1678.83 (445)
924.23(12)† 0.46(3) 1240.85 (124), 177, (317)
927.25(5) 9.46(5) 1501.79 253, 322, (382), 575
951.06(17)a 0.21(3) 1602.64 (124), 177, 335
987.65(6) 2.17(4) 1240.85 253
1012.2(5)c 0.15(3) (1176)
1017.98(10)a,‡ 0.13(3) 1918.54 124, 445
1035.55(10)a 0.40(3) 1797.62 177, 445, 761, 1176
1042.32(2)c 2.58(4) 253
1044.95(6) 2.36(4) 1501.79 204, 253, 457
1086.29(14)c 0.49(6) (1350)
1101.13(11)a,‡ 0.08(2) 2001.84 (647), (761)
1136.52(20)† 0.60(5) 1136.95 365
1175.59(7) 3.22(10) 1428.44 253, 1012, 1037
1181.82(6)c,‡ 0.15(1) 1756.35 322
1183.32(6)a,‡ 4.1(10) 1500.00 124, 177, 317
1223.18(6) 1.83(4) 1797.62 (253), 322, 575
1241.03(13) 0.49(4) 1240.85
1249.07(5) 8.37(5) 1501.79 253
1284.73(17)† 0.30(3) 1602.64 (177), (317)
1298.33(21)a 0.21(3) 1756.35 204
1340.81(18)a 0.26(3) 1797.62 (204), (457)
1349.85(25) 0.42(4) 1602.64 253, 1086
1415.93(8)† 0.80(4) 1416.18
1426.09(16)b 0.05(6) 2001.84 575

Continued on next page
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Table 6.1 – Continued from previous page

Energy Intensity Placement γγ-Coincidences
1487.19(26)c,‡ 0.42(7)
1502.26(6) 5.43(5) 1501.79
1544.09(6)†,‡ 0.18(4) 2001.84 204, 253, 457
1545.19(6)‡ 1.26(12) 1797.62 253
1798.53(12) 0.71(5) 1797.62
1801.93(8)a,‡ 0.18(2) 2687.53 (253), 632
1899.18(14) 0.69(5) 2152.2 253
2102.5(9)c 0.08(4)
2105.6(3)a 0.27(4) 2358.59 253
a Newly observed γ ray.
† Newly observed γ ray which is observed in at least one other measurement [6, 47, 55, 71].
b γ ray with different placment than Chacko et al. [26].
‡ γ ray energy and intensity determined from γγ coincident data.
c Unplaced γ ray.

6.3.1 Development of Decay Scheme

The strongest γ ray associated with the 75Ga β decay is observed to be of energy 253

keV. There is a known γ ray from 75Zn β decay of energy 252.9 keV. Hence, the 253-keV

γ-ray peak observed in our singles spectrum was a compound peak from 75Ga and 75Zn

β decay thus requiring determination of the contaminant component. We have used the

relative intensity in the single spectrum of 409.78-keV (Iγ = 35(4)) and 432.29-keV (Iγ =

100(3)) γ rays to determine the intensity of the 253.9-keV (Iγ = 7(2)) γ ray associated

with 75Zn decay [6] which is shown in Figure 6.3. This intensity 1.5(3)% of the total

intensity for the 253-keV γ ray observed in our γ-ray singles spectrum. Also, we set a

coincidence gate on the 178-keV level from 75Zn decay [6, 32], and used the coincidence

information for γ rays of energies 428 keV and 253 keV to estimate the intensity of the
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Figure 6.2: Proposed decay scheme for 75Ga to excited states in 75Ge.
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Figure 6.3: Part of level scheme for 75Ga from Kestorm et al [32].

253-keV γ ray as explained in Chapter 4. From both techniques, we obtained very similar

results and take the weighted average to assign the areas of the 253.9-keV γ ray associated

with 75Zn decay. Then we subtracted this value to determine the area of the 253.08-keV

γ ray associated with 75Ga decay. We normalized the intensities for the rest of the γ rays

based on the corrected area.

First, we established the 253-keV level by placing the 253-keV γ ray feeding the ground

state. We observed a strong γ ray of energy 575 keV which is not is coincidences with

principle γ ray of energy 253 keV. Hence, we established the levels at 575 keV by placing

the 575-keV γ ray feeding the ground state. Similarly, we established the energy levels

at 317, 761 and 886 and 1502 keV by placing the corresponding γ rays as they are not in

coincidence with either the 253-keV or 575-keV γ rays. Then placed the 322-keV γ ray

to 575-keV level, 311-keV and 632-keV γ ray to 886-keV level, and 616-keV, 927-keV

and 1249-keV γ rays to 1502-keV level. Then, we observed the three γ rays of energies
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124, 177 and 317 keV. These γ rays do not see each other in coincidences as well as with

other γ rays already placed in the decay scheme including 253 keV and 574 keV. Then

we proposed a level at 317 keV by placing the 317-keV γ ray. Furthermore, we placed

the other two γ rays of energy 177 keV and 124 de-exciting the level at 317 keV which

feeds in the energy levels at 140 keV and 193 keV. The levels at 140 keV and 193 keV are

well established isomeric states from several previous studies [6]. So, we do not expect

to observe direct feeding of the γ rays connecting the ground state. But in our γ-singles

spectrum, we observed γ rays of energies 52 keV and 139 keV. To estimate the proper

intensities of them, we used the internal conversion coefficient reported in the NNDC [6]

database. Our data also support the existence of 139- and 193-keV isomeric states. We

placed rest of the γ rays observed from our measurements connecting levels based on the

coincidence information and construct the decay scheme which is shown in Fig. 6.2.

The energy levels we observed at 140 keV, 253 keV, 317 keV, 457 keV, 575 keV, 762

keV, 885 keV, 1241 keV, 1427 keV and 1502 keV are in agreement with those proposed

by Chacko et al. Our coincidence data reveled that, in addition to the 988-keV and 1241-

keV γ rays reported by Chacko et al., four more γ rays of energies 340 keV, 401 keV,

666 keV, and 924 keV de-excite the level at 1341 keV. Another 854-keV γ ray is observed

de-exciting the level 1428 keV along with the 1176-keV γ ray reported by Chacko et al.

Furthermore, the γ rays of energies 365, 616 keV and 849 keV were placed de-exciting the

level at 1502 keV along with 927-keV, 1043-keV, 1249-keV, and 1502-keV γ rays reported

by Ref. [26]. Also, the γ ray of energies 911 keV, 1037 keV and 1341 keV de-excite
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the level at 1798 keV in additon to 124-keV, 1544-keV and 1799-keV γ rays reported by

Chacko et al. [26].

From this measurement, a new energy level at 652 keV is firmly proposed by placing

the γ ray of energy 335 keV feeding the 317-keV level. We observed a 335-keV γ ray

which is in definite coincidences with the γ rays of energies 177 and 317 keV leading to

its placement as de-exciting the 652-keV level. Furthermore, it shows two more γ rays of

energies 849 and 951 keV in definite coincidences which feeds-in the level as shown in

Fig. 6.2. The level at 652 keV was also reported by previous (p, d) reaction of Ge nuclei

measurements [38, 90, 96]. Hence, our data suggest that there a level at 652 keV.

A level at 839 keV is proposed by placing a γ ray of energy 382 keV feeding the level

at 457 keV. We observed that the 382-keV γ ray is in definite coincidences with 457-keV

γ ray leading it’s placement as de-exciting the 839-keV level. Furthermore, 382-keV γ ray

shows definite coincidences with γ rays of energies 401 keV and 661 keV which feeds in

the level 839 keV suggesting that there is a level at 839 keV.

A level at 901 keV is firmly proposed based on four γ-ray transitions of energies 326-,

444-, 583- and 647-keV feeding the levels at 575, 457, 317 and 253 keV respectively. In

this work, we observed a 326-keV γ ray which is in definite coincidence with the 575-keV

γ ray leading its placement de-exciting the level at 901 keV. Another 444-keV γ ray was

observed in definite coincidences with 457- and 253-keV γ rays leading its placement as

de-exciting the level at 900.57 keV. Furthermore, a 583-keV γ ray was observed which

is in definite coincidence with 177- and 317-keV γ rays and placed as de-exciting the

level at 901 keV. Besides that, a 647-keV γ ray was observed in definite coincidences with
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253- and 340-keV γ rays and placed it de-exciting the level at 901 keV. Consequently, our

data support that there is level at 901 keV. Moreover, this proposed level at 901 keV is in

agreement with previous studies from (n, γ) reactions [47, 55, 71].

A level at 1101 keV is tentatively proposed by placing a γ ray of energy 340-keV

feeding the 762-keV level. A 340-keV γ ray was observed in definite coincidences with

761-keV γ ray leading its placement as de-exciting the level at 1101 keV. This level is

represented by a dashed line in decay scheme as it was proposed based on a single γ-ray

transition with weak intensity resolved from the 340-keV γ-ray doublets.

A level at 1304 keV is proposed by the placement of γ ray of energy 543 keV feeding

the 761.52-keV level. We observed a 542.68-keV γ ray which is in definite coincidence

with 445-keV γ ray leading its placement as de-exciting the level at 1304 keV. The energy

level at 1304 keV is represented by a solid line in the decay scheme (even it was proposed

by a single γ-ray transition) because the placement of 445-keV γ ray is based on definite

coincidences in both directions.

A level at 1416 keV is firmly proposed by the placement of three γ rays of energies 656,

842, and 1416 keV feeding the levels at 762 keV, 575 keV and ground state respectively.

In the present work, a 656-keV γ ray is observed in definite coincidence with 445-keV γ

ray leading its placement as de-exciting the level at 1416 keV. Furthermore, an observed

842-keV γ ray shows a definite coincidence with 575-keV γ ray leading its placement as

de-exciting the level at 1416 keV. Besides that, a 1416-keV γ ray was observed which

shows no coincidences with any γ rays and tentatively placed it as de-exciting the level at
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1416 keV. Our proposed level at 1416 keV is in agreement with previous studies by (n, γ)

and (p, d) reactions [47, 71].

A level at 1500 keV is proposed by placing the two γ rays of energies 661 keV feeding

the level at 839 keV and 1183 keV feeding 317 keV. We observed a 660-keV γ ray in

probable coincidences with 380-keV γ and placed it de-exciting the level at 1500 keV. In

addition, 1183-keV γ ray is observed in definite coincidences with 124-, 177- and 317-keV

γ rays leading its placement to the 1500 keV. Hence our data suggest that there is a level at

1500 keV.

A level at 1603 keV is firmly proposed by placing four γ rays of energies 763, 951,

1285 and 1350 keV feeding the levels at 839, 652, 317 and 253 keV respectively. We

observed a 951-keV γ ray which is in definite coincidence with 334- and 177-keV γ rays

leading it’s placement as de-exciting the level at 1603 keV. Besides that, a 1285-keV γ ray

was observed which shows definite coincidences with 177-and 317-keV γ rays leading its

placement as de-exciting at 1603-keV level. Furthermore, a 1350-keV γ ray was observed

which shows the definite coincidences with 253-keV γ ray and placed it as de-exciting

the level at 1603 keV. Also, γ-ray of energy 763 keV shows probable coincidence with

382-keV γ ray and tentatively placed it de-exciting the level at 1603 keV. Consequently,

our data strongly suggests that there is a level at 1603 keV, which is in agreement with

previous 76Ge(p, d), (d, t) and (3He, α) studies [38, 90, 96].

A level at 1679 keV is proposed by placing the γ ray of energy 917 keV feeding the

level at 762 keV. We observed a 917-keV γ ray which shows a definite coincidence with

445-keV γ ray leading it’s placement as de-exciting the level at 1679 keV. The level at
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1679 keV is represented by a dashed line in the decay scheme as it is established with a

single γ-ray transition.

A level at 1756 keV is proposed by placing two γ rays of energies 1182 keV feeding

the level at 575 keV and 1298 keV feeding the level at 457 keV. We observed a 1182-keV

γ ray which is in definite coincidences with 322-keV γ ray leading to its placement as de-

exciting the level at 1756 keV. Furthermore, a 1298-keV γ ray was observed which shows

definite coincidence with 204-keV γ ray leading it’s placement as de-exciting the level at

1756 keV. Consequently, our that suggest that there is a level at 1756 keV.

A level at 1919 keV is proposed by placing the γ ray of energy 1018 keV feeding

the level at 901 keV. In this work, a 1018-keV γ ray is observed which shows definite

coincidence with 445- and 124-keV γ rays leading its placement as de-exciting the level at

1919 keV. This level is also represented by a dashed line in the decay scheme.

A level at 2002 keV is proposed by the placement of γ rays of energies 1101, 1428

and 1544 keV feeding the levels at 901, 575 and 457 keV respectively. In this work, a

1101-keV γ ray was observed which shows probable coincidence with 647-keV γ ray and

have tentatively placed it as-exiting the level at 2002 keV. A 1428-keV γ ray was observed

in definite coincidence with 575-keV γ ray leading its placement de-exciting the level at

2002 keV. Besides that, a 1544-keV γ ray was observed in definite coincidence with 253-

keV γ ray and placed it as de-exciting the level at 2002 keV. Consequently, our data firmly

suggest that there is a level at 2002 keV.
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A level at 2152 keV is proposed by placing the 1899-keV γ ray feeding the 253-keV

level. We observed a 1899-keV γ ray in definite coincidences with 253-keV γ ray leading

it’s placement as de-exciting the level at 2152 keV.

A level at 2359 keV is proposed by placing the γ ray of energy 2106 keV feeding the

level at 253 keV. We observed a 2106-keV γ ray which is in definite coincidence with 253-

keV γ ray leading its placement as de-exciting the level at 2359 keV. This level at 2359

keV is represented by a solid line because the placement of 253-keV γ ray is based on

definite coincidences in both directions.

Finally, a level at 2688 keV is proposed by placing the γ ray of energy 1803 keV

feeding the level at 886 keV. We observed a 1802-keV γ ray in definite coincidences with

632-keV γ ray leading its placement as de-exciting the level at 2688 keV. Thus, our data

suggest that there is a level at 2688 keV.

Our analysis supports the placements of the most of the γ rays and energy levels re-

ported in the previous β-decay study [26]. However, a γ ray of energy 124 keV was placed

de-exciting the level at 885 keV by Chacko et al. For this placement to be correct, the

124-keV γ ray should see γ rays of energies 444 and 761 keV in coincidence. Our result

does not support this fact since neither γ ray is observed in the 124-keV coincidence gate,

nor is the 124-keV γ ray observed in the gates set on the 444- and 761-keV γ rays. Rather

the 124-keV γ ray is observed in definite coincidences with the 1183-keV γ ray which is

also in coincidences with 317- and 177-keV γ rays. Therefore, we placed the 124-keV γ

ray as de-exciting the 317-keV level and populating an isomeric state at 193 keV, which is

in agreement with previous 74Ge(n, γ) study [6].
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Chacko et al. observed several γ rays which we did not observe and were likely due

to contamination in their experiment. In the Chacko et al. experiment, 75Ga was produced

from the (γ, p) reaction on 76Ge which was only 73.89% pure. Other Ge isotopes present in

the targe sample were 74Ge (10.08%), 73Ge (1.69%), 72Ge (6.65%) and 70Ge (7.69%) [26].

We assume that the purity of our beam removes any of the possible contaminants present

in the previous experiment. Consequently, we are able to remove a total of six γ rays. A

279-keV γ ray was reported by Chacko et al. with intensity 2.9(6) [26]. Our γ-ray singles

spectrum does not show any evidence for this γ-ray peak. Furthermore, we removed five

other γ rays reported in previous β-decay study: γ ray of energy 1239.5 keV is identified

associated with 69Ga, γ rays 1358.8, 1796.4, and 2089.7 keV are identified associated with

75Zn of the same decay chain whereas γ ray of energy 1745.6 keV is identified associated

with 74Ga decay.

We do not see any evidences for four energy levels at 584.1, 1222.5, 2103.7 and 2664.4

keV reported by Chacko et al. The energy level at 584.1 keV was proposed by two γ

rays of energies 444.8 and 584.1 keV. In the present work, we observed the 443.53-keV

γ ray in definite coincidences with γ rays of energies 203 keV, 253 keV and 457 keV

indicating it feeds the 457.21-keV level. Furthermore, a 583.32-keV γ ray was observed

is in definite coincidences with 177- and 317-keV γ rays indicting it feeds the level at 317

keV. Therefore, both γ rays were placed de-exciting the level at 900.57 keV. The 1222.5-

keV level was proposed based on γ rays of energy 648 and 1222 keV de-exciting the

level. In the present work, 647-keV γ ray is assigned to a level 901 keV as it sees definite

coincidences with 253-keV γ ray and does not see the evidence for 1223-keV doublets.
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So, we removed the level at 1223 keV. The energy level at 2103.7 keV is proposed based

on a single γ-ray transition which feeds the ground state. Chacko et al. reported the γ-ray

of energy 2103.7 keV with intensity 0.20(5). In our measurement, we do not observe any γ

ray having energy 2103.7 keV, and removed this level. The energy level at 2664.4 keV was

proposed with a single γ ray of energy 2089.7 keV but we identified it belongs to 75Cu. In

addition, we have adjusted the placement of 1427.0-keV γ ray to the level at 2002.50 keV

as it sees definite mutual coincidences with 575-keV γ ray.

In the Chacko et al. study, they reported the observation of γ rays of energies 1182,

1358 and 1745 keV but were unable to place them in the decay scheme [26]. The 574.7-

keV γ ray from the Chacko et al. was a compound peak as it contains the component of

573.4-keV γ ray peak form 69Ga β decay. Our data is free from that contamination. The

relative intensity of 574.67-keV γ ray in our spectrum is 40.96% which is slightly higher

than Chacko et al. estimates 31.6%. We proposed that the 1182-keV γ ray is a doublet

where the two γ rays have been placed with confidence as de-exciting the level at 1502

and 1756 keV respectively. We observed some γ rays which have been associated with the

A = 74 decay chain and was no surprise as a 75Cu has 3.5(6)% [83] chance of βn decay to

the 74Zn - 74Ga - 74Ge decay chain. Our coincidence data shows evidence for some of the

γ rays which we assigned to 75Ga as being also associated with the other members of the

same decay chain suggesting unresolved doublets. From knowledge of the γγ coincidence

areas in the cascade and their corresponding ratio, we have calculated the proper γ-ray

intensity to assign each γ-ray in the unresolved doublets. Here, γ rays of energies 783,

841, 864, 1017, 1101, 1488 and 1802 keV are also associated with either 75Cu or 74Zn
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decay. Besides that, in our measurement, five γ rays of energies 340, 444, 885, 1182 and

1544 keV appeared as doublets and we have divided the proper intensity to them applying

the methods explained in Chapter 4.

We observed a γ ray of energy 52.23 keV as a compound peak associated with the 74Zn

and 75Ga decay. The previous experiment by Ishikawa et al. [55] reported the 52-keV γ

ray in coincidences with 124-, 392- and 481-keV γ rays and proposed its placement as

de-exciting the anomalous 5/2+ state of at 193 keV, connecting to the isomeric state at 140

keV with spin-parity 7/2+. We not only observed 52-keV γ ray in coincidences with 124-

keV γ ray but also agree with placing it de-exciting the level at 193 keV. Since the 52 keV

γ ray is a weak γ ray feeding the isomeric state, we used the conversion electron coefficient

of 4.2(10) from Ishikawa et al. [55] to estimate the total relative transition intensity for the

52-keV γ ray as 5.2(24).

We also observed seven γ rays associated to the 75Ga β decay but do not have enough

confidence to place them in the decay which is listed in the Table 6.1 with c footnote. The

total summed intensity of unplaced γ rays is around 1.80(15) relative to 253-keV γ ray.
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Table 6.2: Feeding intensities (Iβ−), log (ft) and assigned spin-parity value for 75Ga β
decay. The β-feeding values are given per 100 decays.

Energy Level Iβ− log (ft) Spin-parity from NNDC
0.00 90(20) 5.45 1/2−

140.03(5) 0.07(1) 8.50 7/2+

192.63(7)† 2.0(10) 7.00 5/2+

253.00(3) 2.70(1) 6.82 3/2−

317.29(3) 0.32(4) 7.71 5/2−

457.21(3) 0.22(1) 7.79 5/2−

574.58(3) 0.85(1) 7.12 3/2−

652.08(6)†,◦ 0 >10.00
761.52(4)◦ 0 >10.00
839.19(6)‡,◦ 0.01 >10.00
885.6(3) 1.34 6.78(1) 1/2−

900.57(4)† 0.25 7.43
1101.48(11)‡,◦ 0.01 8.56
1136.95(4)† 0.03 8.10
1240.85(4) 0.27 7.12(1)
1304.30(21)‡,◦ 0.01 >9.00
1359.47(17)†,◦ 0.01 >9.00
1416.18(5)† 0.05 7.74
1428.44(5) 0.17 7.15
1500.00(3)‡ 0.18(4) 7.07
1501.80(3) 1.21(4) 6.24
1602.64(11)† 0.04 7.63
1678.83(37)‡,◦ 0 >9.00
1756.35(6)†,◦ 0.02 7.89
1797.62(4) 0.20(1) 6.73
1918.55(10)‡,◦ 0.01 9.00
2001.84(5)† 0.07 >7.00
2152.20(14)† 0.03 7.70
2358.59(29)†,◦ 0.01 7.24
2687.53(8)‡,◦ 0.01 >7.00
‡ Newly proposed energy level.
† Newly proposed energy level which agreed with at least one other studies [6, 47, 55, 71].
◦ Intensity balance consistent with zero.
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6.3.2 Estimation of Absolute Branching Ratio

After constructing the detailed level scheme of 75Ge, we have attempted to calculate

the relative β-feeding intensity for each level using the MASTER program. Calculation of

normalization factor for the 253-keV γ ray was complicated due to the presence of isomeric

states at energy 140 and 192 keV. Furthermore, we cannot directly measure the absolute

normalization factor for 253-keV γ ray as we do not know the exact amount of 75Ga which

decayed.

Hence, in estimating the normalization constant, we will make some assumptions.

First, we will assume that we have observed all the γ rays from the decay. Second, we

will assume there is no direct feeding to the ground state, 140- or 193-keV levels as shown

in Fig. 6.4 (a). However, this assumption is not completely true as there should be direct

feeding to the ground state which is governed by allowed transitions from the parent nuclei

(3/2− to 1/2− [6] ). Our assumptions impose the upper absolute limit on the normaliza-

tion factor which is going to overestimate the β-feeding intensity to the levels. Then, we

summed all the γ-rays intensities feeding the levels at 192, 140 and the ground state, which

is represented by white arrows in the Figure 6.4 (a).

Then we took the spin-parity consideration for those states to estimate the β-feeding.

The ground state of the parent nuclei 75Ga has spin-parity of 3/2− from its unpaired proton

being in the 2πp3/2 state which decays to 75Ge through β decay. The ground state of

75Ge has a confirmed 1/2− spin-parity [6] which create the scenario of allowed transition

from 3/2− to 1/2− suggesting it should have a low log (ft) value. We have estimated

the un-observed ground-state β-feeding by considering a log (ft) value of 5.45(10) for the
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allowed transition [62] giving an estimated 90(20)% direct β-feeding to the ground state

which is shown in Fig. 6.4(b). Similarly, we can assume a log (ft) value of 8.5(1) for the

first isomeric state at 140 keV as it is first forbidden unique transition from a 3/2− to 3/2+

state. The estimated direct β-feeding is less than 1%, so we will assume 0%-feeding. For

the second isomeric state at 193 keV, the spin-parity assigned from other studies is 5/2+,

hence is a first forbidden transition from a 3/2− to a 5/2+ state. Therefore, we assume that

the log (ft) value for this states is 6.5(2) which gives the β feeding of 2(1)%.

Based on the assumed feedings, the rest of the β-feeding which is around 8% comes

from the higher lying states inducing 253-keV state. Then the absolute branching ratio for

253-keV γ ray is estimated to be around 4.34%. The β-feeding intensity (Iβ−) for all levels

were normalized based on the above estimation to get the absolute β-feeding value which

is listed in the Table 6.2.

6.3.3 Log(ft) Value and Spin-Parity Assignment

Lower limits log (ft) value for the energy levels in 75Ge fed in the β decay of 75Ga as

shown in Table. 6.2 were calculated as explained in previus Chapter 4 using the NNDC we-

biste [7]. We have used the well accepted Qβ− = 3392.4(24) keV [112] and half-life (T1/2)

= 126(2) s [6] taken from AME2012 [112] for this calculation. The estimated log (ft)

lower limits and possible spin-parity assignments for the established energy levels are listed

in the Table 6.2.

As seen in the low-energy level systematic of the N = 43 isotones shown in Fig. 6.5,

we have assigned the spin-parity of 75Ge ground state to be 1/2−. The 75Ge ground state
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Figure 6.4: Different scenarios of β decay of 75Ga (a and b) to levels in 75Ge used to

determine the absolute brancing ratio of the 253-keV γ-ray transtion. The sum relative

γ-ray intensities to corresponding levels are represented by white arrows and absolute β

intensities are shown on the left next to the energy levels. (See text for details.)

must come from a (ν1g9/2)4 ⊗ (ν2p1/2)1, where the stronger pairing force for the ν1g9/2

orbital puts the odd neutron in the ν2p1/2 orbital. The strong pairing is behind all the

deformation observed in this region. Our calculated log (ft) values are not conclusive for

any of the states to confirm the previously assigned spin-parity values. The theoretical
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Figure 6.5: Low energy level systematics of N = 43 isotones [6, 20, 70, 76, 98, 100].

prediction of spin-parity and states using Nushellx@MSU [23] using JUN45 effective

interaction and JJ44 model space is shown in Fig. 6.6. This calculation predict the ground

state to be 7/2+ from a (ν1g9/2)3 configuration. Other energy levels are slightly stretched

up than we observed in our proposed decay scheme. Hence, the Nushellx prediction is

failing to describe the observed structure of 75Ge nuclei.

6.4 Discussion and Conclusion

Having a very pure 75Cu beam, γγ coincidence data from a high efficiency/high reso-

lution HPGe clover detector array, and better data analysis techniques, we have been able

to identify 78 γ rays associated with 75Ga β decay, placed 71 of them and constructed

the decay scheme with 30 energy levels occupying up to 2.7 MeV. The total number of γ
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Figure 6.6: Nushellx prediction for structure of 75Ge.

rays observed in this measurement is twice as many as reported by the previous β-decay

study [26]. Out of the 30 energy levels proposed from this work, 18 were not included

in the previous β-decay study. Of these 18, 11 are in agreement with levels observed in

other studies [76]. The remaining seven levels are totally new. We have also corrected

the placements of five γ rays and do not observe the evidence for four levels proposed

in the previous β-decay measurement. Hence the present work has extracted more detail

structure information of 75Ge and better understanding of level systematics.
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CHAPTER VII

THE β DECAY OF 76GA

7.1 Introduction

The 76Ge nuclei is a possible candidate for neutrinoless double-β decay (0νββ) which

violates the conservation of total lepton number, as well as a candidate element for mea-

suring the neutrino mass [19]. Understanding the nature of the neutrino is important as it

is supposed to be Majorana particle, i.e neutrinos are their own antiparticles. During the

double-β decay, two neutrinos emitted will annihilate one another and disappear, which

violates the conservation of lepton number as opposed by Dirac equation, hence will ex-

plore physics beyond the standard model [33]. 76Ge is the only candidate nuclide with

reported half-life for double-β-decay study [59] and has a large international focus like

MAJORANA [10] and GERDA [14]. The MAJORANA and GERDA are the international

collaborative efforts to search for neutrinoless double-β decay in 76Ge. Furthermore, 76Ge

exhibits interesting structural features such as shape co-existence [49] and tri-axial defor-

mation at low excitation energy [108] which makes this nuclide important for structure

studies. Several studies including a β decay [25], charged particle scattering [82, 93],

neutron scattering [28, 31, 75, 86], transfer reactions [74, 85], Coulomb excitation [46, 64]

and total absorption spectroscopy [30] have been carried out to understand the structure

of 76Ge nuclei. The low-lying level structure systematics for even-even Ge isotopes from
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mass number A = 70 to 80, as shown in Fig. 1.2, indicates that there is enhanced proton-

neutron interactions for 76Ge as evident by the lowering of the first excited state relative to

the other even-even Ge isotopes. Our research on other nearby nuclides suggested that the

current data available for 76Ge in NNDC may lack some details. Hence, this present work

of detailed β-decay study of 76Ga will help to understand the evolution of singles particle

states for medium-mass even-even Ge nuclei with the addition of neutron pairs, as well as

will provides necessary knowledge for Majorana particle detection.

The information on the β decay of 76Ga available at the National Nuclear Data Center

(NNDC) comes from Camp et al. in 1971 [25]. They utilized the 76Ge(n, p)76Ga reaction

to produce the 76Ga nuclei. Two sources of GeO2 was used having 73.9% and 95.2% 76Ge

and the β-decay measurement was performed using the small Ge(Li) detector of size 38

cm3. They observed a total of 107 γ rays associated to 76Ga decay, placed 97 of them and

proposed a decay scheme up to 6.1 MeV containing 41 energy levels. Out of the 97 γ rays,

35 γ rays were only tentatively placed which generated uncertainty in the existence of on

16 energy levels in the proposed decay scheme. The main problem Camp et al. had was

they did not have coincidence data and had to establish the decay scheme based on γ-ray

energy sums and differences along with consideration of the relative γ-ray intensities. With

data obtained in an experiment to measure the β-delayed neutron emission from 76Cu [116]

using a four-detector clover array, we assumed we would have sufficient data on 76Ga β

decay to confirm or correct the placement of all reported γ rays, thus providing an improved

decay scheme with a better understanding for the structure of 76Ge.
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7.2 Experimental Technique

A 54-MeV proton beam with an intensity of 10-15 µA was used to bombarded a Ura-

nium carbide (UCx) target inside a hot plasma ion source at HRIBF of ORNL. Mass

A = 76 isobaric separation was achieved using the low-resolution mass separator (M/∆M

= 600). After passing the beam through a charge exchange cell, 76Zn ions from the beam

were removed by passing it through the the high-resolution separator (M/∆M = 10,000)

which separated the 76Cu and 76Ga components of the beam providing an essentially pure

beam of 76Cu ions.

These negatively charged ions were accelerated to 2-3 MeV/u by the HRIBF tandem

accelerator and then sent to a shielded room containing the detector setup. The beam

was transmitted through a micro-channel plate (MCP) detector and six segmented mini

ionization chamber (mini-IC) [40] which is filed with CF4 gas at 100 to 200 torrs pressure.

The measurement of six ion energy loss signals in the mini-IC allowed identification of

the atomic number Z of individual mono-energetic isobars. Higher atomic number (Z)

ions lose more energy in the mini-IC and can be made to range out (stop) by adjusting

the gas pressure in the mini-IC, the so-called “Ranging Out”method [40]. Thus beam

purification was done by increasing the gas pressure in mini-IC to stop all isobars except

the one having the lowest atomic number. By using the mini-IC, we could distinguish

the different ions present on the beam based on their energy loss and could determine the

absolute branching ratio (BR) for a decay since we were able to count the individual beam

particles. A more detail explanation of the RO method is given in Refs. [40, 114]. After

removal of long-lived higher-Z isobars, very pure 76Cu ion beam was deposited onto a
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moving tape collector (MTC) in the detector set up. Two modes of operation were used

during the experiment. If the gas pressure was high ∼200 torrs, we would do ranging out.

In this mode, the MTC was placed just behind the mini-IC and the source was moved into

the array. If the pressure was low ∼100 torrs, then we were in the “Pass Through”mode

with the MTC collection point in the center of the array. As the only component of the

beam was the Cu, the timing cycle was designed to maximize the detection rates for γ

rays from the Zn daughters thus enhancing the study of short-lived Cu isotopes [116].

The detector array which consisted of four HPGe clovers γ-ray detectors and two plastic

scintillation counters. The full clover array has a measured peak efficiency of 29% at about

100 keV and 5% at 1.33 MeV. The rate of 76Cu (T1/2 = 0.64s [63]) beam for this particular

experiment was about 160-320 ions/s. Data were collected using a triggerless digital data

acquisition system which recorded the energy and absolute time (25 ns accuracy) [41, 42]

when each γ ray was detected. This allowed offline analysis of the data to establish γγ

coincidences. This experiment was initially intended to measure 76Cu β-delayed neutron

emission only [116] but it allowed for the analysis of all daughter and grand-daughter

(76Zn [94] and 76Ga respectively) β decay free of cost.

7.3 Experimental Results

After the experiment, We have performed the efficiency and energy calibration of the

raw spectra from 16 HPGe crystals, summed them to generate the γ singles, βγ and γγ

coincidence spectra similarly as explained in previous projects. A representative γ-ray

singles spectrum obtained from our measurement for all A = 76 decay chain starting from

122



www.manaraa.com

Figure 7.1: Saturation spectrum obtained with a purified 76Cu beam in the energy range

from 20 keV to 4.2 MeV using the Pass Through mode of the Ranging-Out setup. The

γ-ray peaks associated with 76Ga β decay are marked with their energy. Other members

of the decay chain are indicated by symbols as 76Cu: � (solid diamond), 76Zn: O (open

down-triangle), Background: ◦ (circle) and Escape Peak: ⊗ (crossed bullet). The energy

range focus on the γ rays associated with 76Ge. Prominent γ rays from 76Cu and 76Zn are

presented above 20 keV and below 4.2 MeV.

76Cu is shown in Figure 7.1. We have determined the γ-rays intensity by fitting the peak

area on the un-gated γ-singles spectrum. We analyzed the γγ-coincidence and β-gated

123



www.manaraa.com

spectra to identify the association of all γ-rays peak seen in the γ singles spectrum to the

particular element of the decay chain. The 563-keV γ ray is observed the strongest γ

ray associated to the 76Ga β decay and normalized the intensity of the rest of the γ rays

relative to 563-keV γ ray. Coincidence information was determined from the background

subtracted γ-ray gated spectra with statistical significant confidence. From the analysis, we

have identified 109 γ rays associated with 76Ga β decay. The details of the decay scheme

development is presented in the following sections.
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Table 7.1: Energy, intensity, placement and coincidence information for γ rays associated
with 76Ga β decay (probable coincidences are indicated with parentheses).

Energy Intensity Placement γγ-Coincidences
262.30(11)a 0.66(6) 3182.40 (563), 2920
431.15(4) 5.64(7) 1539.47 546, 563, 1108, 1208, (1482), 1643, 1661,

(1784), 2348, (2592)
489.86(7)b 1.40(7) 3182.40 562, 2129, 847
545.53(3) 36.90(11) 1108.42 431, 563, 914, (1130), 1208, 1396, 1640,

(1643), (1661), 1733, 1811, 1878, 1913,
(1981), 2074, (2083), 2204, 2215, 2369,
(2436), 2524, (2779), 2783, 2843, (2869),
(3190), 3276, 3441

562.91(3) 100.00(19) 562.93 (262), 431, 490, 546, 611, 620, 847, 913,
977, 1010, (1129), 1208, 1258, 1281, 1349,
1482, (1545), 1640, 1642, 1661, 1733,
1784, (1791), (1811), (1844), (1878), 1903,
(1913), (2040), 2068, 2074, (2083), 2130,
2185, 2204, 2215, (2279), 2348, 2357,
2367, (2448), (2478), 2524, 2579, 2586,
2591, 2619, (2630), (2636), (2682), 2760,
2779, 2782, 2844, 2877, 2914, (2981), 3034,
(3047), 3070, (3190),(3275), 3328, 3338,
(3368), 3389, 3413, 3482, 3559, 3568, 3676,
3736, 3925, 3993, 4009

611.2(3)b,†,∗ 0.42(9) 2022.33 (563), 847
619.78(8)a 0.84(6) 3312.65 563, 2130
768.43(5)a 1.55(6) 3951.10 (546),(2074)
846.96(4) 6.58(17) 1410.15 490, 563, 611, (1258), 1281, (1578), 1611,

(1791), 1903, (2068), (2187), 2478, 3034,
(3131), 3146, 3403

913.9(4)∗ 0.29(7) 2022.33 546, (563), (1108)
964.64(5)∗,‡ 0.32(10) 563, (1130)
976.50(3) 7.31(8) 1539.47 563, 1208, 1482, (1608), 1643, 1661, 1784,

2348, 2592, (2697), 2846
993.5(6)‡ 0.10(5) (977), (1108)
1009.55(7)a 1.34(7) 2919.99 (1349)

Continued on next page
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Table 7.1 – Continued from previous page

Energy Intensity Placement γγ-Coincidences
1108.44(3) 27.13(13) 1108.42 431, 914, (1129), 1208, (1563), 1640, (1642),

(1661), 1733, 1811, 1878, 1913, 2074, 2083,
(2091), 2204, 2215, (2436), (2348), (2481),
2524, 2779, 2783, (2869), 2843, 3190, 3275,
(3675)

1129.5(3)b,c 0.29(6) 2668.63 563, (1108)
1208.40(4) 2.95(7) 2747.91 431, (546), 563, 977, 1108
1258.0(3)d 0.32(7) 2668.63 563, 847
1281.30(7)d 1.53(7) 2692.36 (563), 847
1348.73(9) 1.23(7) 1910.92 563, (1010), 2040
1396.30(14)b 0.59(6) 2504.72 (546), (563)
1482.04(15)d 0.53(6) 3021.42 (431), (563), 977
1545.41(8)d 1.19(7) 4237.77 (563), 2129
1562.91(18)a,† 0.48(7) 2668.63 (1108)
1577.8(2)a 0.38(5) 2986.47 (847)
1601.6(4)a 0.38(7) 4444.15 (1733)
1608.23(18)b 0.46(5) 3147.70 (977)
1611.24(15)d,∗ 0.45(13) 3021.42 847
1639.50(4) 8.69(12) 2747.91 546, 563, 1108
1642.79(9) 1.25(8) 3182.40 431, (546), 563, 977, 1108
1660.92(7)d 1.64(7) 3200.15 431, 563, 977
1733.31(9) 1.24(7) 2841.78 546, 563, 1108, (1602)
1783.60(11)a 0.87(7) 3323.05 563, 977
1790.8(4)b 0.22(7) 3200.15 563, 847
1811.42(10) 1.08(7) 2919.99 546, (563), 1108
1844.1(4)a 0.29(6) 2406.99 (563)
1878.1(3)d 0.53(8) 2986.47 (546), (563), 1108
1903.07(18) 0.68(8) 3312.65 (563), 847
1912.96(11)d 1.09(8) 3021.42 546, (563), 1108
1981.0(9)‡ 0.33(6) (431), (546)
2040.1(3) 0.58(9) 3951.10 563, 1349
2067.7(2)a 0.47(7) 3477.61 563, 847
2073.95(4) 6.84(10) 3182.40 546, 563, (768), 1108
2082.53(18)b 0.25(10) 3190.95 (546), 1108
2091.23(9)d 1.84(10) 3200.15 (545), 1108
2129.73(5) 3.68(9) 2692.36 490, 563, (620), 1545
2185.33(15) 0.86(8) 2747.91 563
2186.9(5)a 0.38(14) 3597.06 (563), 847
2204.40(5) 5.50(15) 3312.65 546, 563, 1108

Continued on next page

126



www.manaraa.com

Table 7.1 – Continued from previous page

Energy Intensity Placement γγ-Coincidences
2214.74(6) 4.13(15) 3323.05 546, 563, 1108
2279.0(5) 0.33(9) 2841.78 (563)
2366.9(2) 0.73(11) (546), 563
2348.4(2) 0.77(9) 3887.46 431, 563, 977, 1108
2351.32(12)a 1.50(10) 3890.99 431, (563), 977, 1108
2356.98(6) 4.38(10) 2919.99 262, 563
2366.9(2)a 0.76(11) 2929.84 563
2369.19(12) 2.09(15) 3477.61 546, 563
2435.6(3)d 0.35(6) 3544.01 (563), 546, 1108
2477.7(3) 0.36(6) 3887.46 (563), (847)
2481.18(15)d 0.73(6) 3890.99 (563), (1108)
2524.46(9) 1.33(7) 3632.87 546, 563, 1108
2578.60(6) 3.36(47) 3141.47 563
2585.84(19)b,† 0.69(15) 3147.70 563
2591.6(3)d 0.42(7) 4131.01 431, (563), 977
2619.32(7) 3.56(10) 3182.40 563
2630.37(14) 1.10(9) 3190.95 563
2636.7(5)b 0.35(11) 3200.15 (563)
2681.8(4)d 0.21(6) 3244.72 (563)
2690.3(4)†,‡ 0.18(6)
2696.9(3)a,† 0.29(6) 4237.77 (977)
2759.91(9) 1.77(8) 3323.05 563
2778.88(11) 1.54(8) 3887.46 546, 563, 1108
2782.58(10)d 1.62(8) 3890.99 546, 563, 1108
2843.00(12)d 2.42(19) 4382.47 546, 563, 1108
2846.0(5)a,† 0.45(16) 4382.57 (977)
2868.8(2)d 0.58(6) 3977.20 (546), (563), 1108
2876.5(4)a 0.76(18) 3439.43 563
2913.7(5) 1.73(14) 3477.61 563
2919.8(6) 15.65(14) 2919.99 262
2969.9(3)‡ 0.25(4) (563)
2981.1(6)d 0.15(7) 3544.01 563
3034.11(13) 0.93(6) 4444.15 563, (847)
3048.1(5)a,‡ 0.19(5) (563)
3069.94(10) 1.72(7) 3632.87 563
3130.5(5)‡ 0.24(7) 847, 1108
3141.40(7) 6.95(11) 3141.47
3145.5(4)d 0.33(7) 4555.74 847
3190.2(2)d 0.43(8) 4298.61 (546), 1108

Continued on next page
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Table 7.1 – Continued from previous page

Energy Intensity Placement γγ-Coincidences
3275.6(17)† 0.76(7) 4383.57 (546), 563, 1108
3321.9(12)d 0.14(8) 3323.05
3327.7(4)d 0.20(6) 3890.99 (563)
3333.7(12) 0.13(13) 3333.66
3337.6(4)a 0.19(6) 3900.52 563
3367.6(5) 0.20(5) 3930.50 (563)
3384.9(8)a,‡ 0.28(8) (546)
3388.57(9) 4.59(13) 3951.10 563
3403.11(4) 0.23(6) 4813.26 847
3413.22(17)a,† 0.7(7) 3977.2 563
3440.55(9)a 3.48(9) 4548.97 (546)
3482.6(3)a 0.65(7) 4045.57 563
3558.8(2) 0.95(8) 4121.67 563
3568.02(5)a 0.26(6) 4131.01 563
3675.9(3) 0.63(10) 4784.30 (546), 563, 1108
3735.6(5)d 0.20(6) 4298.61 563
3839.5(7)a 0.15(7) 3839.50
3925.3(2) 0.58(9) 4488.27 563
3951.55(9) 7.79(11) 3951.10
3992.9(2) 0.56(6) 4555.74 563
4008.8(4)a 0.29(5) 4571.69 563
a Newly observed γ ray.
b Newly observed γ ray in agreement with Mukhopadhyay et al. [75].
c Newly observed γ ray in agreement with Toh et al. [108].
d γ ray with different placement then reported in previous β-decay study [25].
† γ ray which is not used to calculate the β-feeding intensity due to energy tolerance issue.
∗ γ-ray energy and intensity determined from γγ coincident data.
‡ unplaced γ ray.

7.3.1 Level Scheme

First, we placed the 563-keV γ ray de-exciting the level at 563 keV feeding the ground

state which is known first excited state from several other measurements [6], then have

constructed the decay scheme by placing the rest of the γ rays based on coincidence in-
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formation. Table 7.1 contains the list of γ rays assigned to 76Ga β decay with their cor-

responding intensity, placement and the γγ-coincidence information. Figure 7.2 (a) and

Figure 7.3 (b) are the proposed level schemes of 76Ge populated by β decay of 76Ga. We

have placed 100 γ rays in our proposed decay scheme with level energies occupying up to

4.81 MeV. The search for the lowest energy associated with this decay observed 262 keV.

Our proposed decay scheme is in good agreement with previous β-decay study by

Camp et al. up to 2022 keV, i.e we firmly confirmed the levels at 563, 1108, 1410, 1539,

1911, and 2022 keV. Above this energy level, we have made significant additions and

deletions as will be discussed later. Furthermore, we have compared our proposed decay

scheme with the recent inelastic neutron scattering measurements by Mukhopadhyay et

al. [75], Coulomb excitation and inelastic scattering by Toh et al. [108] and total absorption

spectroscopy measurement by Dombos et al. [30].

Additional γ ray of energy 611 keV de-exciting the level at 2022 keV and feeding the

level at 1108 keV is observed which was not seen in previous β-decay study [25]. The

level at 2692 keV is in agreement with the previous β-decay study except for one γ-ray

transition of energy 1584 keV. We identified 1584-keV γ ray in our spectra is a source

background. We observed 2279-keV γ ray in probable coincidence with 563-keV γ ray

leading its placement de-exciting the level at 2842 keV and represented by the dashed line

in the decay scheme. Furthermore, energy levels at 2920 keV, 3313 keV and 3323 keV

are further confirmed with an addition of one more γ ray each of energies 1010 keV, 620

keV, and 3322 keV respectively. All these three γ rays reported are newly observed in our

measurement. We have removed a γ ray of energy 1924 keV from 3334-keV level as it
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sees nothing in coincidences. The energy level at 3478 keV is represented by dashed line

in the previous study. We made it solid line as all three γ rays reported before are in strong

statistical coincidences in cascade connecting the ground state. Our data agreed on the

placement of level at 3622 keV and 3887 keV but removed the 1721-keV and 1613-keV γ

rays from the level at 3622 keV. Furthermore, we removed the placement of γ ray of energy

3325 keV from the 3866-keV level. We established the energy level at 3951 keV which has

an additional 768-keV γ ray whereas 1260-keV γ ray reported before is not observed. The

energy level at 4122 keV is now confirmed with both definite γ rays de-exciting the level.

The level at 4238 keV is confirmed by the placement of two γ rays of energies 1545 keV

and 2697 keV and represented by a solid line in the decay scheme. Energy levels at 4784

keV and 4813 keV reported by previous β-decay study are also in agreement to our present

result, but we removed the 1461-keV and 1892-keV γ rays from 4784-keV and 4813-keV

levels respectively. The energy level at 4783 keV and 4812 keV are in agreement with

Camp et al. and represented by solid lines in the decay scheme although both are proposed

by the single γ-ray transition.

7.3.1.1 Description of Newly Proposed Levels

It is always important to confirm or exclude spectroscopic information reported in pre-

vious studies. Energy levels and γ rays reported in previous measurements can be removed

only if we can prove previous placements of all the γ rays assigned to a level can be con-

clusively placed elsewhere in the decay scheme. From the present work, based on the

statistically significant γγ coincidence information, we have been able to propose 24 new
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energy levels of which six are in agreement with at least one previous studies other than β

decay [6]. Below 3.3 MeV, six of the newly proposed levels are in agreement with recent

work by Mukhopadhyay et al. from the inelastic neutron scattering measurement [75]. The

details of the new levels are presented below.

1. A level at 2407.0 keV is tentatively proposed by placing the 1844.1-keV γ ray feed-

ing the 562.93-keV level. An observed 1844.1-keV γ ray shows probable coinci-

dences with only 563-keV γ ray leading its placement as de-exciting the 2406.99-

keV level, which is represented by a dashed line in the decay scheme as it is proposed

from the single γ ray with probable coincidence.

2. A level at 2504.72 keV is proposed by placing the 1396.30-keV γ ray which feeds

the well-established 1108.44-keV level. The 1396.30-keV γ ray which was not ob-

served in previous β-decay study, shows the definite coincidences with 546-keV γ

ray leading its placement as de-exciting the 2504.72-keV level. Although a level

at 2504.72 keV is proposed by single γ ray, we have represented it by a solid line

in the decay scheme as the establishment of this level agreed with recent inelastic

neutron scattering measurement work by Mukhopadhyay et al [75] and 76Ge(n, n′γ)

measurement from Dostemesova et al. [31].

3. A level at 2668.6 keV is firmly proposed by placing the three γ rays of energies

1129.5, 1258.0 and 1562.91 keV feeding the 1539.47-, 1410.15- and 1108.42-keV

levels respectively. An observed 1129.5-keV γ ray shows the probable coincidence

with 1108-keV γ ray and definite coincidence with 563-keV γ ray leading its place-
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ment as de-exciting the 2668.6-keV level. Furthermore, an observed 1258.0-keV

γ ray shows definite coincidences with 847-keV γ ray leading its placement as de-

exciting the 2668.6-keV level. In addition, a γ ray of energy 1562.91 keV is observed

in probable coincidences with 1108-keV γ ray and tentatively placed in de-exciting

the 2668.6-keV level. Consequently, our data suggest that there is a level at 2668.6

keV which is in agreement with Coulomb excitation and inelastic-scattering reac-

tions measurement by Toh et al [108]. The γ rays of energies 1130 keV and 1563

keV reported from this level were not observed in any previous measurements.

4. A level at 2986.5 keV is proposed by placing the two γ rays of energies 1577.8

keV and 1878.1 keV which connect the 1410- and 1108-keV levels respectively. We

observed a 1577.8-keV γ ray which shows the probable coincidence with 847-keV

γ ray and placed it de-exciting the 2986-keV level. A 1577.8-keV γ ray reported by

this work was not observed in any previous measurements. Furthermore, an observed

1878.1-keV γ ray shows the definite coincidence with 1108-keV γ ray which leads

its placement de-exciting the 2986.5-keV level. Hence, our data suggest that there

is a level at 2986.5 keV, which is in agreement with neutron scattering measurement

[75].

5. A level at 3021.42 keV is proposed with three γ rays of energies 1482.04, 1611.2

and 1912.96 keV which connects the well-known 1539-, 1410- and 1108-keV levels

respectively. We observed a 1482-keV γ ray in definite coincidences with 977-keV γ

ray leading its placement as de-exciting the level at 3021 keV. Similarly, the γ rays of
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energies 1612 keV and 1912 keV show 848-keV and 1108-keV γ rays respectively

in definite coincidences leading their placement as de-exciting the level at 3021 keV.

The proposed level at 3021 keV is in agreement inelastic neutron scattering mea-

surement [75].

6. A level at 3147.70 keV is proposed with the two γ rays of energies 1608.23 keV and

2585.84 keV. A 1608-keV γ ray is observed in probable coincidences with 977-keV

γ ray leading its placement as de-exciting the level at 3148 keV. Furthermore, a 2583-

keV γ ray was observed in definite statistical coincidence with 563-keV γ ray and

placed it as de-exciting 3148-keV level. Hence, our data suggest that there is a level

at 3148 keV, which is in agreement with inelastic neutron scattering measurement

[75].

7. A level at 3190.95 keV is proposed by two γ rays of energies 2082.53 keV and

2630.37 keV feeding the 1108-keV, 563-keV levels respectively. We observed a

2083-keV γ ray in definite coincidence with 1108-keV γ ray leading its placement

as de-exciting the 3190-keV level. Furthermore, an observed 2630-keV γ ray shows

a definite coincidence with 563-keV γ ray only and placed it as de-exciting the 3191-

keV level. The proposed level at 3191 keV which is in agreement with inelastic

neutron scattering measurement [75].

8. A level at 3200.15 keV is proposed by the four γ rays of energies 1660.92, 1790.8,

2091.23 and 2636.7 keV feeding the 1539-, 1410-, 1108- and 563-keV level respec-

tively. Two γ rays of energy 1791 keV and 2637 keV we assigned to 3200-keV level
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were not observed in any previous β-decay studies. We observed a 1661-keV γ ray

in definite coincidences with 431- and 976-keV γ ray which leads its placement as

de-exciting the 3200-keV level. Furthermore, an observed 1791-keV γ ray shows

a definite coincidence with 848-keV γ ray leading its placement as de-exciting the

level at 3200 keV. Besides that, an observed 2091-keV γ ray shows a definite coin-

cidence with 1108-keV γ ray and placed it as de-exciting the 3200-keV level. Ad-

ditionally, a 2637-keV γ ray was observed in definite coincidence with 563-keV γ

ray and placed it as de-exciting the level at 3200 keV. Hence, our data strongly sug-

gest that there is a level at 3200 keV which is in agreement with inelastic neutron

scattering measurement [75].

9. A level at 3439.4 keV level is proposed with two γ rays of energies 2876.5 keV and

3440.55 keV feeding the 563-keV level and ground state respectively. Both γ rays

were not observed in previous β-decay measurement. We observed a 2877-keV γ ray

which shows a definite coincidence only with 563-keV γ ray leading its placement as

de-exciting the 3439-keV level. Furthermore, we observed a 3439-keV γ ray which

shows nothing in coincidences and tentatively placed de-exciting the 3439-keV level.

Thus, our data suggest that there is a level at 3439.4 keV.

10. A level at 3544 keV is proposed by placing the two γ rays of energies 2435.60 keV

and 2981.1 keV feeding the 1108-keV and 563-keV levels respectively. We observed

a 2435-keV γ ray in definite coincidences with 545- and 1109-keV γ ray leading its

placement as de-exciting the 3544-keV level. Furthermore, an observed 2981-keV γ
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ray shows a definite coincidence with only 563-keV γ ray leading its placement as

de-exciting the 3544-keV level. Consequently, our data support that there is a level

at 2435.6 keV.

11. A level at 3597.1 keV is proposed by placing the single γ ray of energy 2186.9 keV

which feeds the 1410-keV level in the decay scheme. We observed a 2187-keV γ

ray in definite coincidences with 847-keV γ ray leading its placement as de-exciting

the 3597-keV level. This energy level is represented by the dashed line in the decay

scheme as it was populated by a single γ-ray transition.

12. A level at 3890.99 keV is proposed by placing the three γ rays of energies 2351.32,

2782.58 and 3327.7 keV feeding the 1539-, 1410-, 563-keV levels respectively. We

observed a 2351-keV γ ray in definite coincidence with 977-keV γ ray leading its

placement as de-exciting the 3891-keV level. A 2351-keV γ ray we reported for this

level was not observed by any other previous measurements. Furthermore, a 2783-

keV γ ray was observed in definite coincidences with 545- and 1109-keV γ ray and

placed it de-exciting the 3891-keV level. Besides that, a 3328-keV γ ray shows a

definite coincidence with only 563-keV γ ray leading its placement as de-exciting

the 3891-keV level. Consequently, our data firmly suggest that there is a level at

3891 keV.

13. A level at 3900.5 keV is proposed from a single γ-ray transition of energy 3337.6

keV feeding the 563-keV level. We observed a 3338-keV γ ray in definite coinci-

dence with 563-keV γ ray leading its placement as de-exciting the 3901-keV level.
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The 3336-keV γ ray is newly observed from our measurement, and the proposed

level is represented by the dashed line.

14. A level at 3930.5 keV is proposed by placing a single γ ray of energy 3367.6 keV

feeding the 563-keV level. we observed a 3368-keV γ ray in probable coincidences

with 563-keV γ ray only, leading its placement as de-exciting the 3931-keV level.

Hence, the 3930.50-keV level is represented by a dashed line in the decay scheme.

15. A level at 3977.2 keV is proposed by placing two γ rays of energies 2868.8 keV and

3413.22 keV feeding the 1108-keV and 563-keV levels respectively. The 3413-keV

γ ray is newly observed in this measurement. We observed a 2869-keV γ ray in

definite coincidences with 1108-keV γ ray leading its placement as de-exciting the

3976-keV level. Furthermore, a 3413-keV γ ray is observed in definite coincidences

with 563-keV γ ray and placed it de-exciting the 3976-keV level. Thus, our data

suggest that there is a level at 3977.2 keV.

16. A level at 4045.6 keV is proposed by placing a single γ ray of energy 3482.6 keV

feeding the 563-keV level. We observed a 3483-keV γ ray which shows definite

coincidence with 563-keV γ ray only leading its placement as de-exciting the 4046-

keV level. The 3483-keV γ ray is newly identified to the β-decay study, and the

proposed level is represented by a dashed line in the decay scheme.

17. A level at 4131.01 keV is proposed by placing the two γ rays of energies 2591.6 keV

and 3568.02 keV feeding the 1539-, and 563-keV levels respectively. We observed

a 2592-keV γ ray which is in definite coincidences with 431- and 977-keV γ rays
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leading its placement de-exciting the 4130-keV level. Furthermore, an observed

3568-keV γ ray shows the definite coincidences with 563-keV γ ray only leading

its placement de-exiting the 4131-keV level. A 3568-keV γ ray is newly observed

associated to this decay element. Hence, our data suggest that there is a level at

4131.01 keV.

18. A level at 4298.6 keV is proposed by placing the two γ rays of energies 3190.2 keV

and 3735.6 keV feeding the 1108- and 563-keV levels respectively. We observed

a 3190-keV γ ray in definite coincidence with 1109-keV γ ray and placed it as de-

exciting the 4299-keV level. Furthermore, an observed 3736-keV γ ray shows the

definite coincidences with 563-keV γ ray only leading its placement as de-exciting

the 4299-keV level. Consequently, our data suggest that there is a level at 1298.6

keV.

19. A level at 4382.47 keV is proposed by placing the two γ rays of energies 2843.0

keV and 3275.6 keV feeding the 1539-, 1108-keV levels respectively. We observed

a 2843-keV γ ray which shows the definite coincidences with 545- and 1108-keV

γ rays leading its placement as de-exciting the 4328-keV level. Besides that, an

observed 3276-keV γ ray shows a definite coincidence with 1108-keV γ ray leading

its placement as de-exciting the 4382-keV level. The 2845-keV γ ray reported here

is newly observed from our measurement.

20. A level at 4444.15 keV is proposed by placing three γ rays of energies 1601.6,

3034.11 and 3337.6 keV feeding the 2841-, 1410- and 1108-keV levels respectively.
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We observed a 1601-keV γ ray in probable coincidences with 1733-keV γ ray and

tentatively placed it as de-exciting the 4444-keV level. Furthermore, we observed

a 3034-keV γ ray in definite coincidences with 847-keV γ ray leading its place-

ment as de-exciting the 4444-keV level. The 160-keV γ ray reported for this level

is a newly observed in our present study. Additionally, we observed 3338-keV γ

ray which shows probable coincidences with 546-keV γ ray and tentatively placed

as de-exciting the 4444-keV level. Hence, our data suggest that there is a level at

4444.15 keV.

21. A level at 4488.3 keV is proposed by placing the γ ray of energy 3925.3 keV which

feeds the well-known 563-keV level. We observed a 3925-keV γ ray in definite co-

incidence with 563-keV γ ray only, leading its placement as de-exciting the 4488.3-

keV level.

22. A level at 4548.97 keV is proposed by placing the γ ray of energy 3440.55 keV

feeding the level at 1108-keV. In this measurement, we observed that 3441-keV γ

ray in definite coincidence with 545-keV γ ray leading its placement as de-exciting

the 4549-keV level. The 3441-keV γ ray is newly observed from this measurement,

and the level is represented by a dashed line in the decay scheme.

23. A level at 4555.75 keV is proposed by placing a γ ray of energy 3145.5 keV which

connects the 1410-keV level. We observed the 3146-keV γ ray in definite coinci-

dence with 847-keV γ ray leading its placement as de-exciting the 4556-keV level.

The level 4555.75 keV is represented by a solid line in the decay scheme.
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24. Finally, a level at 4571.7 keV is proposed by placing the γ ray of energy 4008.8

keV feeding the 563-keV level. An observed 4009-keV γ ray shows the definite

coincidence with 563-keV γ ray leading its placement as de-exciting the 4571-keV

level. The 4009-keV γ ray reported in this study were not observed by any previous

measurements.

7.3.1.2 Previously Reported Energy Levels not Observed in Current Study

From our high-efficiency, high-resolution β-decay study, our coincidence data do not

observe any evidence for 19 energy levels reported by Camp et al, of which 9 of them were

firmly proposed whereas 10 were mentioned as uncertain [25]. An explanation for each

deletion is given in the following paragraph.

(i) An energy level at 2284.2 keV was proposed by placing the 1175.7-keV γ ray (Iγ =

0.71(18)) feeding the 1108.45-keV level [25] in Camp et al. In the present work,

we observed a γ-ray peak near 1176-keV energy, but from the β-gated spectra, we

identified it as a source background. Camp et al. reported three more 2435.6-keV

(Iγ = 0.56(7)), 3465.5-keV(Iγ = 0.21(4)) and 3736.9 -keV (Iγ = 0.24(6)) γ-ray

feeding into the level at 2284.2 keV. A 2435.43-keV γ ray is observed in definite

coincidences with 545- and 1109-keV γ ray and not the 1176-keV γ ray leading its

placement as de-exciting the 3544-keV level. Furthermore, we observed a 3465-keV

γ ray (Iγ = 0.21(4)) but sees nothing in coincidences and has not placed it on the

decay scheme. Besides that, a 3736-keV γ ray (Iγ = 0.20(6)) is observed in definite

coincidence with 563-keV γ ray leading its placement as de-exciting the 4299-keV
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level. Consequently, our data suggest that there is no level at 2284.2 keV, which

is in agreement with inelastic neutron scattering measurement [75] and Coulomb

excitation and inelastic-scattering reactions measurement [108].

(ii) A level at 2591.1 keV is proposed by placing the three γ rays of energies 1051.7

(Iγ = 0.71(10)), 1482.5 (Iγ = 0.75(11)) and 2591.0 keV (Iγ = 0.41(7)) feeding the

1539.46-keV, 1108.45-keV levels and the ground state respectively in previous Camp

et al. study [25]. We observed a weak γ-ray peak of energy 1052 keV which sees

nothing in coincidence and has not placed in the decay scheme. A 1482.0-keV γ ray

(Iγ = 0.53(6)) was observed in definite coincidences with 976.4-keV γ ray leading

its placement as de-exciting the 1539.47-keV level. Furthermore, a 2591.6-keV γ

ray (Iγ = 0.42(7)) was observed in definite coincidences with 431-keV and 977-

keV γ rays leading to its placement as de-exciting the 4131.01-keV level. Hence,

our data do not support the existence of level at 2591.1 keV which is in agreement

with recent inelastic neutron scattering measurement [75].

(iii) A level at 2654.6 keV was proposed by placing the two γ rays of energies 1546.0 keV

(Iγ = 0.65(13)) and 2091.0 keV (Iγ = 0.27(6)) feeding the 1108-keV and 563-keV

levels respectively by Camp et al [25]. In the present work, we observed a 1545.4-

keV γ ray (Iγ = 1.19(7)) which is in definite coincidence with 2129-keV γ ray

leading its placement as de-exciting the 4237.77-keV level. Furthermore, a 2091.23-

keV γ ray (Iγ = 1.84(10)) was observed in definite coincidences with 1108-keV γ

rays leading its placement as de-exciting the 3200.15-keV level. From this work,
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both γ rays are placed to higher energy levels in the decay scheme. Hence, our data

do not support the existence of the level at 2654.6 keV. Rejection of this energy level

is in agreement with recent inelastic neutron scattering measurement [75].

(iv) A level at 2768.76 keV was proposed by placing the two γ-ray transitions of en-

ergies 1358.9 keV (Iγ = 0.28(9)) and 1660.30 keV (Iγ = 1.17(8)) feeding the

1410.08- and 1108.45-keV levels respectively in previous study [25]. We do not ob-

serve 1359-keV γ ray in our γ-singles spectrum. Furthermore, a 1660.92-keV γ ray

(Iγ = 1.64(7)) was observed in definite coincidences with 431- and 976-keV γ rays

leading its placement as de-exciting the 3200.15-keV level. Consequently, our data

do not support that there is a level at 2768.76 keV, which is in agreement with recent

inelastic neutron scattering measurement [75].

(v) A level at 3231.8 keV was reported by a single γ-ray transition of energy 2668.8 keV

(Iγ = 0.24(5)) feeding the 563-keV level and was kept question mark on previous β-

decay study [25]. In the present work, we observed a very weak 2668.28-keV γ ray

which shows nothing in coincidence. Hence, our data do not support the existence

of the level at 3231.8 keV.

(vi) A level at 3409.2 keV was proposed by placing the single γ-rays transition of energy

661 keV (Iγ = 1.12(10)) feeding the 2727.76-keV level. Also, a 1310.6-keV γ ray

(Iγ = 0.40(7)) feeds in the 3409.2-keV level [25]. In the present work, we observed

a very weak 661-keV γ ray but identified associated with 76Zn decay. Furthermore,
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we didn’t observe a 1310.6-keV γ ray in our γ-singles spectrum. Hence, our data do

not support that there is a level at 3409.2 keV.

(vii) A level at 4192.9 keV was proposed by placing the γ rays of energies 1273.1 (Iγ =

1.82(11)) and 2782.7 keV (Iγ = 1.53(12)) feeding the 2919.99- and 1410.08-keV

levels respectively in previous study [25]. This level was noted uncertain too. In

this present study, we don’t observe a 1273.1-keV γ ray. A 2782.56-keV γ ray

(Iγ = 1.62(8)) was observed which shows definite coincidences with 545- and 1108-

keV γ rays and not the 847-keV γ ray, leading its placement as de-exciting the level

at 3890.99 keV. Hence, our data do not support the existence of level at 4192.9 keV.

(viii) A level at 4326.5 keV was proposed by placing the γ rays of energies 1014.2 keV

(Iγ = 0.54(8)) and 1634.0 keV (Iγ = 0.23(6)) feeding the 3312.33- and 2692.4-

keV levels respectively from previous work [25]. This level was also mentioned

uncertain. In the present work, We do not observe 1014-keV γ ray whereas 1636-

keV γ ray (Iγ = 0.21(6)) was observed but sees nothing in coincidence. So, we

don’t have evidence to place it at 4227-keV level. Consequently, our data do not

support that there is a level at 4226.5 keV.

(ix) A level at 4363.5 keV was proposed by placing the two γ rays of energies 885.8

keV (Iγ = 2.00(15)) and 1443.9 keV (Iγ = 0.39(10)) feeding the 3477.65- and

2919.99-keV levels respectively. This level was mentioned uncertain too [25]. We

identified 885.8-keV γ ray is more likely associated with 76Cu while do not observe
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1443.9-keV γ ray in our spectra. Hence, our data do not support the level at 1463.5

keV.

(x) A level at 4476.5 keV was proposed by placing the two γ rays of energies 843.8 keV

(Iγ = 1.73(17)) and 3913.3 keV (Iγ = 0.19(4)) feeding the 3632.75- and 562.93-

keV levels respectively. This level was also mentioned uncertain [25]. We didn’t

observe 843.8-keV γ ray in our decay spectra, observed weak 3919-keV γ-ray peak

but sees nothing in coincidence and have no evidence to place it as de-exciting the

4476.5-keV level. Consequently, our data do not support the existence of level at

4476.5 keV.

(xi) A level at 4719.9 keV was firmly proposed in previous β-decay study by placing the

three γ rays of energies 1310.6 keV (Iγ = 0.42(7)), 1878.3 keV (Iγ = 0.55(6)) and

2435.6 keV (Iγ = 0.56(7)) feeding the 3909.19-, 2841.57- and 2284.22-keV levels

respectively [25]. In the present work, We observed a 1310-keV γ ray (Iγ = 0.18(5))

but shows nothing in coincidences and do not have evidence to place it at 4719.9-keV

level. Furthermore, an observed 1878.05-keV γ ray (Iγ = 0.53(8)) shows definite

coincidences with 1108-keV γ ray and placed it de-exciting the 2986.47-keV level.

Besides that, we observed a 2435.59-keV γ ray (Iγ = 0.35(6)) which shows definite

coincidence with 545-and 1108-keV γ rays leading its placement as de-exciting the

3544.01-keV level. Hence, our data support that there is no level at 4719.9 keV.

(xii) A level at 4814.8 keV was proposed by placing the two γ rays of energies 1182.1

keV (Iγ = 0.77(11)) feeding the 3632.72-keV level and 1502.3 keV (Iγ = 0.74(10))
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feeding the 3312.33-keV level. This level was also mentioned mentioned uncer-

tain by previous study [25]. In the present work, We observed both 1181-keV

(Iγ = 0.26(7)) and 1502-keV (Iγ = 0.30(5)) γ rays but both of them see noth-

ing in coincidences. Hence, we have no evidence to place them in the 4814.8-keV

level.

(xiii) A level at 5122.48 keV was firmly proposed by placing the three γ rays of ener-

gies 1489.6 keV (Iγ = 0.35(10)), 1940.3 keV (Iγ = 1.04(7)) and 1980.4 keV

(Iγ = 0.33(6)) feeding the 3632.75-, 3182.21- and 3141.51-keV levels respectively

by previous work [25]. In the present work, we do not observe 1940-keV γ ray,

observed the 1489-keV γ ray but identified as associated with 76Cu, i.e. we do

not observe the actual γ ray reported before. Furthermore, a weak 1981-keV γ ray

was observed in singles spectra which shows 545-keV peak only in probable coin-

cidences but do not have enough statistics to place in decay scheme. Consequently,

our data do not suggest that there is a level at 5122.48 keV.

(xiv) A level at 5522.6 keV was proposed by placing the three γ rays of energies 1282.9

keV (Iγ = 0.43(11)), 2680.9 keV (Iγ = 0.49(5)) and 2868.1 keV (Iγ = 0.53(7))

feeding the 4239.4-, 2841.57- and 2654.51-keV levels respectively in previous study

[25]. From the present work, we observed a 1281-keV γ ray (Iγ = 1.16(5)) which

shows definite coincidences with 847-keV γ ray leading its placement as de-exciting

the 2692.36-keV level. Furthermore, an observed 2681.8-keV γ ray (Iγ = 0.21(5))

shows probable coincidences with 563-keV γ rays and tentatively placed it as de-
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exciting the 3244.72-keV level. Besides that, a 2868.8-keV γ ray (Iγ = 0.58(6))

was observed in definite coincidences with 1108-keV γ rays and not any of the

γ rays de-exciting the 2654-keV level leading its placement at 3977.20-keV level.

Consequently, our data do not suggest that there is a level at 5522.6 keV.

(xv) A level at 5663.37 keV was proposed by placing the four γ rays of energies 2481.1

keV (Iγ = 0.30(6)), 2970.1 keV (Iγ = 0.60(7)), 3752.1 keV (Iγ = 0.25(5)) and

4253.2 keV (Iγ = 0.34(5)) feeding the 3182.21-, 2692.40-, 1911.09- and 1410.08-

keV levels respectively [25]. In the present work, we did not observe 2481-, 2970-

and 4253-keV γ rays in our singles spectra, whereas 3752-keV γ peak is identified as

a single escape peak of 4263-keV γ ray. Hence, our data do not support the existence

of the level at 5663.37 keV.

(xvi) A level at 5749.9 keV was proposed by placing the two γ rays of energies 2981.2 keV

(Iγ = 0.31(6)) and 3465.2 keV (Iγ = 0.21(4)) feeding the 2768.76- and 2884.22-

keV levels respectively in previous study [25], and mentioned this level uncertain.

In the present measurement, we observed a 2981.07-keV γ ray (Iγ = 0.12(5)) which

shows definite coincidences with 563-keV γ ray but not the any γ ray de-exciting

the 2768.76-keV level, leading its placement to the 3544.01-keV level. Furthermore,

an observed 3465-keV γ ray (Iγ = 0.24(5)) sees nothing in coincidence and has not

placed in the decay scheme. Hence, our data do not support the existence of the level

at 5749.9 keV.
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(xvii) A level at 5882.8 keV was proposed by placing the two γ rays of energies 2700.5

keV (Iγ = 0.30(5)), and 3190.6 keV (Iγ = 0.32(4)) feeding the 3182.21- and

2692.40-keV levels respectively and mentioned uncertain in previous study [25]. In

the present work, we identified the 2700-keV γ ray associated with 76Cu but not the

76Ga. Furthermore, an observed 3190-keV γ ray (Iγ = 0.43(8)) shows definite coin-

cidences with 1109-keV γ ray but not any of the γ rays de-exciting the 2692.40-keV

level, leading its placement as de-exciting the 4298.61-keV level. Consequently, our

data do not support that there is a level at 5883.0 keV.

(xviii) A level at 6021.1 keV was reported by placing the two γ rays of energies 3328.7 keV

(Iγ = 0.30(9)) and 3366.5 keV (Iγ = 0.22(3)) feeding the 2692.40- and 2654.51-

keV levels respectively in previous study [25]. In the present work, we didn’t observe

3328-keV γ ray, whereas 3366-keV γ ray (Iγ = 0.20(5)) was observed in probable

coincidences with 563-keV γ ray leading its placement as de-exciting the 3930.50-

keV level. Hence, our data do not support that there is a level at 6021.1 keV.

(xix) A level at 6065.2 keV is proposed by placing the two γ rays of energies 2882.9 keV

(Iγ = 0.21(7)) and 3145.3 keV (Iγ = 0.45(9)) feeding the 3182.21- and 2919.99-

keV levels respectively from previous work [25]. This is the highest energy level

proposed from previous β-decay measurement. We didn’t observe 2883-keV γ ray in

our decay spectra whereas 3145.5-keV γ ray (Iγ = 0.33(7)) was observed in definite

coincidence with 847-keV γ ray and not any of the γ ray de-exciting the 2919.99-
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keV level, leading its placement as de-exciting the 4555.74-keV level. Consequently,

our data do not suggest that there is a level at 6065.2 keV.

The previous β-decay study [25] has reported the 76Ga-decay scheme up to 6065 keV,

but our data do not support the placement of levels except above 4813 keV. Furthermore,

we identified 8 γ rays which have strong coincidence information, matched in previously

reported energy levels but needs energy tolerance more than 1.25 keV. These γ rays are

placed in decay scheme but has not used for β-feeding intensity calculation which are

listed in the table 7.1 marked with † symbol. Also, 9 γ rays which are identified associated

with this 76Ga decay but do not have enough coincidence information are unplaced in the

decay scheme and reported Table 7.1 with symbol ‡.
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Figure 7.2: Part (a) of the proposed decay scheme for 76Ga to excited states in 76Ge show-

ing low-energy transitions.
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Figure 7.3: Part (b) of the proposed decay scheme for 76Ga to excited states in 76Ge show-

ing high-energy transitions.
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Table 7.2: Feeding intensities (Iβ−), lower limit log (ft) and assigned spin-parity value for
76Ga β decay. The β-feeding value are given per 100 decays.

Energy Level Iβ− log (ft) Spin-parity from NNDC
0.00(0) - - 0+

562.93(2) 9.6(5) 7.05 2+

1108.42(2) 7.5(3) 6.98 2+

1410.15(4)◦ 0 10.75 4+

1539.47(3)◦ 0 10.70 3+

1910.92(6)◦ 0 10.56 0+

2022.3(4) 0.20(5) 8.22 4+

2407.0(4)a 0.18(4) 8.10
2504.72(15)b 0.40(4) 7.71 2+

2668.6(2)b,d 0.43(7) 8.57 4+

2692.36(4) 1.16(11) 7.17 3+

2747.91(3) 8.26(11) 6.29 2+

2841.79(9) 0.77(9) 7.28 2+

2919.99(4)a 13.26(13) 6.00 (1, 2)+

2929.8(2) 0.49(7) 7.43
2986.5(3)b 0.35(5) 7.55 (2, 3)+

3021.42(8)b 1.41(12) 6.93 (2, 3)+

3141.47(5) 6.24(31) 6.22 1+

3147.70(19) 0.45(5) 7.36 (2, 3)+

3182.40(3) 7.98(13) 6.01 2+

3190.95(18)b 0.17(6) 7.76 2+

3200.15(6)b 2.70(11) 6.56 (3)+

3312.65(5) 4.72(12) 6.25 3−

3323.05(5) 4.48(12) 6.27 2+, 3, 4+

3333.7(12) 0.08(8) 8.00 (2)+

3439.4(4)a 0.49(12) 7.17
3477.61(10) 2.80(14) 6.39 1-4
3544.0(2)a 0.33(6) 7.28 2+

3597.1(5)a 0.26(10) 7.36
3632.87(7) 1.98(7) 6.45 (2)+

3887.46(9) 1.81(9) 6.34 (3−)
3890.99(7)a 2.71(10) 6.16
3900.5(4)a 0.12(4) 7.51
3930.5(5)a 0.20(5) 7.27
3951.10(5) 8.99(13) 5.61 1−or2−

3977.2(2)a 0.38(4) 6.96
4045.6(3)a 0.42(5) 6.87

Continued on next page
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Table 7.2 – continued from previous page

Energy Level Iβ− log (ft) spin-parity
4121.67(16) 0.87(6) 6.51 (1, 2+)
4131.0(2)a 0.46(6) 6.78
4237.77(9) 0.83(5) 6.45
4298.6(2)a 0.41(6) 6.71
4382.47(13)a 1.70(13) 6.04
4444.15(12)a 0.91(7) 6.26 (3−)
4488.3(2)a 0.37(6) 6.62
4548.97(10)a 2.33(6) 5.76
4555.75(19)a 0.58(6) 6.37
4571.7(4)a 0.19(3) 6.85
4784.3(3) 0.42(6) 6.33 1-4
4813.3(4) 0.15(4) 6.75
a New energy level.
b New energy level agreed with Mukhopadhyay et al. [75].
d New energy level agreed with Dombos et al. [30].
◦Feeding to this level was consistent with zero.

7.3.2 β-Feeding and Log(ft) Values

Figure 7.4 shows the β-feeding profile comparison of our result with previous two

measurements by Camp et al. [25] and Dombos et al. [30]), which clearly shows that there

is β-feeding shift to higher energy levels in our measurement specially between 2.5 to 4.5

MeV. This is due to the understanding of coincidence information and their statistically

confident placements in the decay scheme. The β-feeding intensity of first excited state

is observed to be 9.63% which is less than previously reported 14.4% value by Camp et

al. [25], and greater than 7.3% reported by Dombos et al. [30]. We observed slightly lower

feeding to 1108-keV level (Camp: 10.2%, Dombos: 11.7% and our: 7.53%). Furthermore,

in the present study, almost no feeding to 1410-keV level is observed which is in good

agreements with Camp et al. as well as Dombos et al. Camp et al. reported 10.5% β-
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Figure 7.4: Theβ-feeding profile for 76Ga β decay.

feeding to the level at 1539 keV, but we observed no feeding to this level which is in

agreement with Dombos et al. TAS measurement. The level at 2747 and 2920 keV are

observed with significantly more feeding then reported before (level 2747 keV: Camp -

6.81%, Domobs - 5.4%, present - 8.26%, level 2920 keV: Camp-10.26%, Dombos - 9.80%

and present - 13.3%). The energy level at 3141 keV is reported with 1.0% β-feeding value

by Camp et al., but our measurement observed to be much lager feeding to this level (6.2%)

which is in close agreement with Dombos et al. (9.8%). We observed most of the energy
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level above 3 MeV has similar β-feeding including 3951 keV (Camp - 9.70%, present -

8.99%).

We have calculated the llog (ft) [7] value for each level using the Qβ− of parent 76Ga

- 6916.2(20) keV [112] and half-life - 32.6(6) s [6] which is listed in the Table 7.2.

7.3.3 Spin-Parity Assignment and Nushellx Result

From the level systematics of Ga nuclei, the spin-parity of the ground state of 76Ga

was assumed to be 3− in the work by Camp et al. The recent work by Mane et al. [68]

measured it to be 2− from laser spectrsocopy. From spin-parity considerations the first two

excited states should be feed by first forbidden transitions (∆J = 0, ∆π = -1). The previous

measurements estabelish the first two states as 2+ and log (ft) values we obtained are in

consistent with this fact. For the 4+
1 energy level at 1410 keV, the observed feeding is

consistent with zero is also consistent with a frist frobidden unique transition(∆J = +2, ∆π

= -1). Our log (ft) value support to assign 0+ spin-parity to 1910-keV level which are in

agreements with previous work [25, 75] where as 1+ to 2920-keV and 3951-keV levels.

Further, we have calculated the theoretical prediction of 76Ge states from the Nushellx@MSU

[23] codes using JJ44 interaction and JUN45 model space. The obtained result is shown

in Fig. 7.5. Our experimental measurement is in agreement to the theoretical value except

for low energy states which are slightly stretch up by few hundred keV. Below 2 MeV,

Nushellx predicts the six energy levels (0+ and 2+ two each, 3+ and 4+ one each) which

is in agreement with our experimental results. It is observed that there are no negative
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Table 7.3: List of γ rays reported by previous β-decay measurement [25] which is not
observed or have no coincidence information to place them in the decay scheme from the
present work.

Camp et al. Present work
Energy (keV) Intensity Energy (keV) Intensity Comments

335.9(5) 8.0(20) - - Not observed
661.4(2) 1.12(10) - - ”
843.8(2) 1.73(17) - - ”

885.83(10) 2(15) 885.45(23) 0.27(5) Sees nothing in coincidences
927.05(10) 1.40(8) 927.58(20) 0.27(4) Belongs with other decay members
1014.2(2) 0.54(8) 1014.21(39) 0.15(5) Sees nothing in coincidences
1043.6(4) 0.45(4) 1043.87(14) 0.46(5) ”
1051.7(2) 0.71(1) - - Not observed
1182.1(3) 0.77(1.1) 1181.08(45) 0.26(7) Sees nothing in coincidences
1249.1(2) 0.97(1) 1248.05(15) 0.51(6) ”
1273.1(1) 1.82(11) - - Not observed
1310.6(3) 0.42(7) 1310.05(36) 0.18(5) ”
1358.9(6) 0.28(9) - - Not observed
1443.9(5) 0.39(1) 1442.82(85) 0.77(5) Sees nothing in coincidences
1461.2(3) 0.50(1) - - Not observed
1502.3(5) 0.74(1) 1502.49(22) 0.3(49) Sees nothing in coincidences
1582.5(3) 0.75(11) 1581.17(34) 0.28(6) ”
1634(2) 1.73(8) 1636.6(5) 0.21(6) Sees nothing in coincidences

1721.9(7) 0.22(7) 1722.46(79) 0.13(7) Sees nothing in coincidences
1892.7(2) 0.61(4) 1891.90(69) 0.12(5) ”
1924.6(3) 0.3(4) - - Not observed

1940.30(14) 1.04(7) - - ”
2489.6(4) 0.3(6) - - ”
2668.8(4) () 0.24(5) - ”
2882.9(9) 0.21(7) - - ”
3283.6(5) 0.26(6) 3283.70(129) 0.06(5) Sees nothing in coincidences
3465.5(4) 0.21(4) 3464.28(47) 0.24(5) ”
3752.1(5) 0.25(5) 3752.90(21) 0.65(6) ”
3913.3(5) 0.19(4) - - Not observed
4253.3(5) 0.34(5) 4251.50(32) 0.28(5) Sees nothing in coincidences
Total (Iγ) 28.3(4) Total (Iγ) 4.9(5)
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Figure 7.5: Nushellx prediction of structure of 76Ge.

parity states below 3 MeV which is surprising. Also, it clearly matches both results for

populating very dense states in between 3.0 to 4.5-keV range.

7.4 Discussion and Conclusion

From this high-resolution, high efficiency β-decay study of 76Ga, we have been able

to construct a more comprehensive and accurate decay scheme based on statistically sig-

nificant γγ coincidences. We identified 109 γ rays associated with this decay and were

able to place 100 γ ray into the decay scheme thus establishing 49 energy levels up to

4.812 MeV. We have observed 34 new γ rays and 24 new energy levels which were not

reported in the previous β-decay measurement. We observed no evidence for 19 energy

levels reported in the first β-decay study by Camp et al. but in agreement with more re-
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cent work [75, 108]. Out of the 107 γ rays reported by Camp et al., we did not observe

30 of them (they were either very weak, not seen in the spectrum as they are beyond our

detection limit, or identified as source background or escape peak, or observed but shows

no coincidence information and couldn’t confirm their association to 76Ga decay) and are

listed in the Table 7.3. Also, we found eight of the γ rays have other components as well.

Form the coincidence information, we divided the intensity and assign the proper intensity

to each γ rays.

From the Qβ− value, we would expect there to exist energy levels up to 6 MeV as re-

ported by Camp et al., but our coincidence information doesn’t allow us to place energy

levels above 4.8 MeV. Our measured β-feeding profile is in close agreement with recent

TAS measurement by Dombos et al except near 3 MeV where we have significantly more

feeding. Although it looks our decay spectrum is slightly squeezed, as it is not constructed

on the guess or tentative placement method, we assume we have correct understanding of

76Ge structure. A total absorption spectroscopy (TAGS) study of 76Ga β decay by Dombos

et al. [30] used the previously reported decay scheme [25] which likely includes incor-

rect information to generate a simulation for comparison to their spectrum, and our work

suggests need to revisit that calculations.
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CHAPTER VIII

THE β DECAY OF 77GA

8.1 Introduction

From the classical shell model view of 77Ga, it has three protons in the π2p3/2 orbitals

and six neutrons in ν1g9/2 orbitals. The 77Ga ion produced in the decay of 77Cu chain is

unstable. To form the stable one, one of the neutrons from the ν1g9/2 shell coverts to the

proton and emits the β particles. Then the proton in the excited states emits γ rays and

decay to the ground states. 77Ge is not the stable nuclei, it again emits β particles and

becomes the stable 77As.

The primary information of the structure of 77Ge populated by β decay of 77Ga comes

from the Aleklett et al. [16] from 1977, which is stored in NNDC database. They observed

14 γ rays for this decay process, placed 13 of them and established a decay scheme with

nine excited states. Qβ− value of 77Ga is 5220.5 keV [112] and their study was only able to

construct a decay scheme up to 2817-keV level. It is likely that more γ-ray transitions and

high energy excited states were missed in the observation. Besides that, the main problem

associated with their study did not have γγ coincidence data, and the proposed decay

scheme was developed using the energy sums, differences and γ-ray intensity balances.

A recent study of excited states of 77Ge by Kay et al. [57] from transfer-reaction ob-

served twice as many (26) γ rays. But, they were able to establish a decay scheme only
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up to 1385 keV, and also do not observe some excited states seen by previous β-decay

measurements.

The more comprehensive level scheme of the 77Ge comes from the neutron capture

reaction 76Ge(n, γ) by Meierhofer et al. [71] in 2012. They have constructed the decay

scheme with 68 prompt γ-ray transitions. Both of the recent experiments [57,71] has used

the coincidence information to construct the decay scheme, but still the detector efficiency

widely limited the information.

From the previous knowledge of the structure of 74−76Ge, we expect to extend the decay

existing decay scheme, filling the gaps as well as correct the placement of some of the γ-ray

transitions reported in previous studies using very pure beam and high-efficiency detectors

along with the statistical significant γγ coincidence information. The detailed structure

of 77Ge is important to improve the background prediction and the veto efficiency for the

delayed 77mGe decay in the GERDA experiment: experiments searching the Majorana

particles [71].

8.2 Experimental Technique

The experiment was performed using the Holifield Radioactive Ion Beam Facility at

Oak Ridge National Laboratory. Pure 77Cu ions were produced from the proton-induced

fission of UCx target following the two stages of mass separation. Pure Cu ions production

mechanism was pretty similar as explained in Chapter 7. Then the two sets of experi-

ments were performed. In the first experiment, accelerated 77Cu ions of average intensity

15-ions/sec were time-tagged using the microchannel plate detector, passed through a six-
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Figure 8.1: Saturation spectrum obtained in the LeRIBSS data run with a purified 77Cu

beam in the energy range 25 keV to 2.7 MeV. The γ-ray peaks associated with 77Ga decay

are marked with their energy. Other members of the decay chain are indicated by symbols

as 77Cu: ∆ (triangle-up), 77Zn: � (diamond), 77Ge: # (hash), 76Zn: • (solid bullet), 76Ga:

O (triangle-down) and Background: ⊗ (crossed bullet). The energy range focuses on the γ

ray assocaited with 77Ge. The presence 76Zn and 76Ga in the spectra comes from 30.0(27)%

β-delayed neutron emission probability [53].

segmented ion chamber (IC), and implanted on the moving tape collector (MTC) with the

tape transport time 525 s. Then, data were collected in Pass-Through (PT) mode in which

IC was run at a low pressure allowing the more than 99% of identified and counted 77Cu
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ions exit the IC and implanted on the MTC. The MTC cycle was chosen 7-s to limit the

77Ga build up in a sample (T1/2 = 13.2 s) [53]. Then the data were collected using the trig-

gerless data acquisition system. The second experiment was performed on the LeRIBSS

setup. Average beam intensity used for this mode of the experiment was 130-ions/s and

tape transport time was chosen 210 ms. As the beam was not accelerated in this mode of

experiment, approximately one order of magnitude gain was observed. The 3-s growth/3-s

decay MTC cycle was chosen as this experiment was intended to study 77Cu decay (T1/2 =

480ms) but it also allowed us for the decay of 77Zn and 77Ga study. Detail explanation of

the experiment is given in Ref. [53].

The intensities of the γ ray reported for this dissertation were taken from LeRIBSS

experiment which was calculated using the γ-singles spectra. We found many γ-ray peaks

associated with the 77Ga were suppressed with the huge backgrounds peaks and β-gated

spectra were used to identify the actual γ-ray energy and corresponding intensity. Some

of the peaks intensity were calculated based on the γγ coincidence information after con-

structing the decay scheme as explained in Chapter 4.

8.2.1 Experimental Results

Raw data from the HPGe crystals were gain matched and energy calibrated as ex-

plained in Chapter 4. Then, all the spectra were combined to generate the γ singles, βγ,

and γγ coincidence spectra. Figure 8.1 is the summed saturation γ-singles spectra form

the LeRIBSS run. From the γγ and βγ coincidences information, we identified the 78

γ-ray prompts associated to the 77Ga decay, of which 470-keV γ ray was the strongest one.
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Then we normalized the intensity of rest of the γ ray relative to 470-keV γ ray intensity.

Table 8.1 is the list of the γ-rays associated to 77Ga decay, their corresponding intensities,

and coincidence information. Fig. 8.2 is the proposed level scheme of 77Ge populated

by the β decay of 77Ge based on the statistically significant γγ-coincidences. A strong

160-keV γ ray was observed which shows nothing in coincidences. Hence, as predicted

by other measurements [16, 57, 71], we placed it as de-exciting the 160-keV level which

feeds the ground state. This is a isomeric state, and we do not expect to see any γ ray in

coincidence with 160-keV γ ray. We placed the strongest γ-ray of energy 470 keV feeding

the level at 160 keV leading its placement as de-exciting the 630-keV level. Furthermore,

we proposed the levels at 421 keV and 619 keV by placing the 421- and 619-keV γ rays

respectively. Then, placed rest of the γ ray connecting those levels based on the γγ coinci-

dence information. In the present work, we observed all γ rays and energy levels reported

by the previous β-decay study [16]. The detail explanations of the proposed decay scheme

is presented below.

8.2.2 Development of Level Scheme

In the present work, we identified 77 γ rays associated to 77Ga decay, placed 67 of

them in the decay scheme and established the decay scheme up to 3.14 MeV with 33

energy levels. We firmly confirmed all the energy levels at 160 keV, 421 keV, 619 keV,

630 keV, 1021 keV, 1048 keV, 1359 keV, 1664 keV and 2817 keV reported by Aleklett

et al. [16] in previous β-decay measurement. Aleklett et al. has proposed 421-keV level

tentatively. We confirmed this level by placing the 9 γ-ray transitions of energy 85 keV,
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198 keV, 627 keV, 1041 keV, 1242 keV, 1457 keV, 1558 keV and 2392 keV feeding into the

level. The three γ rays of energies 627 keV, 1041 keV and 2392 keV are newly observed γ

rays associated to 77Ga decay whereas rest of them has already observed in at least one of

the other measurements [16, 57, 71].

We identified three more γ rays of energies 115 keV, 127 keV and 198 keV de-exciting

the 619-keV level. Besides that, 15 more γ rays were placed which feeds in the level. All

three γ rays reported in this experiment de-exciting the level were also observed in other

measurements [57, 71], which will be discussed in detail later. The energy level at 1021

keV is established with a γ ray of energy 392 keV de-exciting the level while two more

γ rays feeds in. Furthermore, an energy level at 1359 keV has confirmed by placing the

additional 729-keV γ ray de-exciting the level. Similarly, 1663-keV level is confirmed

with additional 3 γ-ray transitions other than reported in previous work [16]. All the new

energy levels observed other than previous β-decay study are going to discuss in detail

below.
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Table 8.1: Energy, intensity, placement and coincidence information for γ rays associated
with 77Ga β-decay (probable coincidences are indicated with parentheses)

Energy Intensity Placement γγ-Coincidences
84.76(8)b,∗ 0.9(3) 505.37 (115), (421), (1160)
114.8(8)b,†,∗ 0.1(5) 618.71 657
126.6(2)b,∗ 0.9(5) 618.69 492
159.65(8) 43.2(9) 159.58 –
197.6(2)b,∗ 1.9(4) 618.69 (421), (1044), 2196
224.0(2)b,† 0.14(7) 225.00 534, 684
291.5(2)b,∗ 0.6(2) 910.27 (459)
331.7(5) 1.8(3) 491.84
392.4(2)b 3.6(8) 1021.27 470, (642), 1069, 2224
402.48(7) 0.5(3) 1021.27 (459), 642
418.38(7)b,∗ 8(3) 910.27 492, (2113)
421.15(8)b 49.5(22) 421.18 (85), 198, 470, (627), 1041, (1159), 1242, 1315,

(1414), 1457, 1555, 2113, 2392, 2385
422.5(2) 8.7(22) 1052.76 470, (1249), 1315
459.07(7) 48.5(8) 618.69 (292), 668, 741, 983, 1044, (1129), 1358, 1882,

1948, 2106, 2196, 2224, (2375), (2526)
469.97(6) 100.0(10) 629.52 392, 422, (642), 657, 729, 970, 990.5, 1034,

1249, (1315), 1347, 1358, 2185, 2247
492.03(7)b 22.3(8) 491.89 127, 418, 561, 795, 970, 1728, 1876, 2078,

2385, (2546)
505.11(6)b,∗ 4.4(16) 505.37 1159
534.3(3)b,†,∗ 2.6(7) 760 (224)
561.02(9)b,∗ 1.4(4) 1052.76 492
618.9(9) 12.2(8) 618.69 839, (1044), 1948
626.5(8)a,†,∗ 0.9(3) 1047.89 (421)
641.85(13) 6.5(7) 1663.33 (402), (470), 862
656.79(12)a 2.4(9) 1275.48 115, (470)
665.0(5)a,∗ 0.2(1) 1952.73 (795)
667.6(2)b,∗ 2.3(5) 1286.69 (459), (795), (888)
684.2(2)b,‡ 3.9(8)
719.24(9)a,† 0.39(19) 2180 (391), (470) 741
729.0(2)a 1.4(6) 1359.04 470
740.53(14) 6.4(8) 1359.04 459, 619, (719)
781.4(2) 3.6(7)† 1663.92 884
794.83(7)b,∗ 4.1(17) 1286.69 (492), (665)
831.19(15)b,∗ 3.0(8) 1878.89 888
839.4(2)c 3.9(8) 1458.09 (160) 619

Continued on next page
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Table 8.1 – Continued from previous page

Energy Intensity Placement γγ-Coincidences
861.6(11) 23(3) 1021.27 642
884.17(18) 4.9(8) 884.17 780, 2109
888.34(7) 18.5(9) 1047.89 831
970.41(5)a 5.3(18) 1599.93 470
990.8(5)‡,∗ 6.20(19) (469)
983.17(19)a,† 4.8(7) 1598.41 459
1034.1(5)a 3.0(11) 1663.33 470
1041.2(2)a 5.8(9) 1462.36 421
1044.29(11)a 4.5(9) 1663.33 (198), 459, (619)
1069.0(3) 1.6(3) 2090.23 392
1129.4(7)‡ 1.4(8) (460)
1158.8(2)a 4.6(8) 1663.33 85, 421, 505
1242.21(6) 32.6(9) 1663.33 421
1249.3(3)b 3.4(12) 1878.89 422, 470
1315.3(4)b 3.5(9) 2368.18 422, 470, (492), 561
1333.1(6) 1.0(4) 1952.00 795
1347.4(4)a,∗ 2.6(8) 1977.18 470
1358.22(13)a 12.4(11) 1977.18 459
1414.2(3)‡ 3.3(7) (422)
1447.6(5)‡,∗ 1.3(4) 1952.00 (505)
1457.3(2)b,∗ 3.7(5) 1878.89 421
1503.81(11) 10.8(8) 1663.33
1554.84(16)b,†,∗ 2.3(5) 1975.65 421
1557.7(3)c 3.6(9) 1977.18 421
1720.4(6)b 2.2(8) 1878.89
1728.8(5)‡,∗ 7.3(3) (492)
1741.1(18)b 5.8(7) 1900.68
1876.3(2)c 7.0(9) 2368.18 (492)
1881.8(5)a 9.10(15) 2500.53 459
1948.1(4)a 4.0(9) 2567.36 459, (619)
2077.5(7)a 1.8(8) 2567.36 (492)
2105.6(7)a 3.0(18) 2724.26 459
2108.9(5)‡,∗ 1.53(3) (885)
2112.72(12)a 12(5) 3022.99 (224), 418
2185.07(9)b 28.4(9) 2814.4 470
2196.25(8)c 10(3) 2814.4 459
2223.61(8)a,‡,∗ 2.6(14) 392, 459
2246.9(3)a 4.8(8) 2876.48 470
2374.6(5)‡ 2.4(8) 459

Continued on next page
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Table 8.1 – Continued from previous page

Energy Intensity Placement γγ-Coincidences
2385.2(7)a,∗ 1.7(8) 2876.48 (492)
2392.44(9) 2.6(4) 2814.4 421
2525.9(4) 1.5(4) 3144.60 (459)
2545.8(5)‡,∗ 4.3(4) (492)
2621.85(9)‡ 1.1(5) 459
a Newly observed γ ray.
b Newly observed γ ray which is also reported by at least one other measurements [16, 57, 71].
c γ ray with different placement from previous β-decay measurement [16].
† γ ray which is not used to calculate the β-feeding intensity due to energy tolerance issue.
∗ γ-ray energy and intensity determined from γγ coincident data.
‡ unplaced γ ray.

8.2.2.1 Description of Newly Proposed Levels Below 1664 keV

Although, the previous 76Ga β-decay study by Aleklett et al. [16] was able to propose

the decay scheme of 76Ge up to 2717 keV, our current study is able to confirm the levels

below 1664 keV only.

1. A level at 224 keV is tentatively proposed by placing a 224-keV γ ray feeding the

ground state. The 224-keV γ ray is observed with very weak intensity and the level

is represented by a dashed line in the decay scheme. Two γ rays of energies 534

keV and 684 keV are observed in probable coincidence with 224-keV gated γ-ray

spectrum. Both γ rays were reported by Kay et al. [57] to this level, while only

534-keV γ ray is reported from neutron capture reaction [71]. Hence, our data show

evidence for the level at 224 keV.
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Figure 8.2: The proposed decay scheme for 77Ga to excited states in 77Ge.
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2. A level at 492 keV is proposed by placing the 492-keV γ ray de-exciting the level

with six 127-, 332-, 418-, 1876-, 2078- and 2385-keV γ ray feeding in. This pro-

posed level is in agreement with previous transfer reaction and neutron capture mea-

surements [57, 71]. Out of the six γ rays feeding the level, 2077-keV and 2385-keV

γ rays were not observed in any previous measurements. The 1876-keV γ ray is

placed populating the level 630-keV level in neutron capture study [71], we have

corrected it’s placement.

3. A level at 505 keV is proposed by placing the 505-keV γ ray feeding the ground state.

We observe a 505-keV γ ray in definite coincidences with 115-, 1159- and 1448-keV

γ ray, and were feeds in the level. This level is in agreement with previous transfer

reaction and neutron capture studies [57, 71]. The γ rays of energies 115 keV [57]

and 1448 keV [71] which were reported in the early experiment were observed weak

in intensity whereas 1159-keV γ ray is newly observed. Furthermore, we observe a

505-keV γ ray as a compound peak associated with 77Cu and 77Ga. To resolve the

proper intensity of the 505-keV γ ray, we utilized the relative intensity of the γ rays

of energies 421 keV (Iγ = 124(3)) and 504.8 keV (Iγ = 37(2)) from the Kay et al. [57]

work. Our estimated intensity of 505-keV γ ray associated with 77Ga decay is 8.3%

of the compound peak.

4. A level at 760 keV is tentatively proposed based on 535-keV γ-ray transition feeding

the 224-keV level. We observed a 534-keV γ ray in probable coincidence with 224-
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keV γ ray and placed it as de-exciting the 760-keV level which is in agreement with

the transfer-reaction and neutron capture reaction studies [57, 71].

5. A level at 884 keV is proposed based on the single γ-ray transition of energy 884

keV connecting the ground state. The 885-keV γ ray was observed in definite coin-

cidence with 781-keV γ ray and placed populating the 884-keV level. This level is

in agreement with previous neutron capture study [71].

6. A level at 910 keV is firmly proposed by three γ-ray transitions of energies 292 keV,

418 keV and 684 keV. In this work, we observed a 292-keV γ ray in probable coin-

cidence with 459-keV γ ray leading its placement as de-exciting the 910-keV level.

Furthermore, an observed 418-keV γ ray shows definite coincidences with 492-keV

γ ray leading its placement de-exciting the 910-keV level. Besides that, we observed

a 684-keV γ ray in probable coincidence with 224-keV γ ray and placed de-exciting

the 910-keV level. Moreover, an observed 2113-keV γ ray is in definite coincidence

with 418-keV γ ray and placed feeding the 910-keV level. Consequently, our data

suggest that there is a level at 910 keV which is in agreement with the transfer-

reaction and neutron capture reaction studies [57, 71].

7. A level at 1053 keV is firmly proposed by placing the two γ rays of energies 422

keV and 561 keV feeding the 630- and 492-keV levels respectively. We observed

a 422-keV γ ray in definite coincidence with 470-keV γ ray leading its placement

as de-exciting the 1053-keV level. Furthermore, an observed 561-keV γ ray which

shows 492-keV γ ray in definite coincidences and placed as de-exciting the 1053-
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keV level. Hence our data suggest that there is a level at 1052 keV, which is in

agreement with the previous two studies [57, 71].

8. A level at 1275 keV is proposed by placing the γ ray of energy 657 keV feeding the

619-keV level. We observed a 657-keV γ ray in definite coincidence with 115-keV

γ ray leading its placement as de-exciting the 1275-keV level, which is in agreement

with previous transfer-reaction study [57].

9. A level at 1287 keV is firmly proposed by placing the three γ rays of energies 657

keV, 668 keV and 795 keV feeding 630-, 492- and 619-keV levels respectively. In

the present work, we observed 657-keV γ ray in probable coincidences with 470-

keV γ ray leading its placement as de-exciting the 1287-keV level. A 795-keV

γ ray was observed in definite coincidence with 492-keV γ ray and placed it as

de-exciting the 1287-keV level. Besides that, a 668-keV γ ray was observed in

probable coincidences with 459-keV γ ray and placed it as de-exciting the 1287-keV

level. Thus our data support the establishment of a level at 1287 keV which is in

agreement with transfer-reaction study [57].

10. A level at 1458 keV is tentatively proposed with a single γ-ray transition of energy

839-keV feeding the 619-keV level. An observed 839-keV γ ray shows a 619-keV

γ ray in definite coincidence leading its placement de-exciting the level at 1458 keV.

The 839-keV γ ray was reported in previous transfer-reaction measurement [57] but

we have corrected its placement based on γγ coincidences.
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11. A new level at 1462 keV is proposed by placing the single γ-ray transition of energy

1041 keV feeding the 630-keV level. We observed a 1041-keV γ ray in definite

coincidence with 421-keV γ ray leading its placement as de-exciting the 1461-keV

level. The level at 1462 keV is represented by the solid line although it is proposed

by a single γ ray because the placement of 1041-keV γ ray is based on definite

coincidences in both directions

12. A new level at 1600 keV is firmly proposed by placing the two γ rays of energies

970 keV and 983 keV feeding the 630- and 619-keV levels respectively. Both γ rays

were not observed in any previous studies. We observed a 970-keV γ ray in definite

coincidence with 470-keV γ ray and 983-keV γ ray in definite coincidences with

459-keV γ ray leading their placement as de-exiting the 1600-keV level. Hence, our

data support the establishment of a level at 1600 keV.

8.2.2.2 Description of Newly Proposed Energy levels Above 1664 keV

Instead of 2817-keV γ ray proposed from Aleklett et al., we have established a 2814-

keV level by placing the 2814-keV γ ray feeding the ground state. The energy levels above

1664 keV proposed from our work are going to discuss below.

13. A level at 1879 keV is firmly proposed by placing the γ rays of energies 831, 1249

and 1457 keV feeding the 1879-, 630- and 421-keV levels respectively. In the present

work, we observed an 831-keV γ ray which is in definite coincidence with 888-

keV γ ray leading its placement as de-exciting the 1879-keV level. Furthermore, an

observed 1249-keV γ ray shows 470-keV γ rays in definite coincidence leading its
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placement as de-exciting the 1879-keV level. Besides that, we observed a 1457-keV

γ ray which shows a definite coincidence with 421-keV γ ray and placed it as de-

exciting the 1879-keV level. Consequently, our data support that there is a level at

1879-keV which is in agreement with previous neutron capture (n,γ) work [71].

14. A level at 1901 keV is tentatively proposed by placing the γ ray of energy 1741 keV

feeding the 160-keV level. In this work, we observed a strong 1741-keV γ ray which

shows nothing in the coincidences. Hence we assume it feeds the isomeric state 160-

keV leading its placement as de-exciting the 1901-keV level. The proposed level at

1901 keV is in agreement with the previous (n,γ) work [71].

15. A level at 1952 keV is proposed by the placement of three weak intensity γ rays

of energies 665, 1333 and 1447 keV feeding the 1287-, 619- and 505-keV levels

respectively. We observed a 665-keV γ ray which is in probable coincidences 795-

keV γ ray leading its placement as de-exciting the 1952-keV level. Furthermore, an

observed 1333-keV γ ray shows 795-keV γ ray in definite coincidence leading its

placement as de-exciting the 1952-keV level. Besides that, a 1447-keV γ ray was

observed in probable coincidence with 505-keV ray and placed it as de-exciting the

1952-keV level. Hence, our data suggest that there is a level at 1952-keV, which is

in agreement with the previous (n,γ) study [71]. The 1334-keV γ ray reported for

this level was not observed by any previous measurements.

16. A level at 1977 keV is proposed by placing the three 1347-, 1358- and 1558-keV γ

rays feeding the 630-, 619- and 421-keV levels respectively. All these three γ rays
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are newly observed in this measurement. A 1347-keV γ ray is observed in definite

coincidence with 470-keV γ ray leading its placement as de-exciting the 1977-keV

level. Furthermore, a 1358-keV γ ray was observed in definite coincidence with

459-keV γ ray and placed it as de-exciting the 1977-keV level. Besides that, we

observed 1558-keV γ ray in definite coincidence with 421-keV γ ray and placed it

as de-exciting the 1977-keV level. Thus, our data support that there is a level at 1977

keV.

17. A level at 2090 keV is tentatively proposed by the placing the single γ ray of energy

1069 keV feeding the 1021-keV level. We observed a 1069-keV γ ray which is in

definite coincidence with 392-keV γ ray leading its placement as de-exciting the

2090-keV level. The level at 2090 keV is represented by the solid line in the decay

scheme (although it is proposed from a single γ ray) because the placement of 1069-

keV γ ray is based on definite coincidences in both directions.

18. A level at 2368 keV firmly proposed by placing the two γ rays of energies 1315 keV

and 1876 keV feeding the 1053- and 492-keV levels respectively. We observed a

1315-keV γ ray in probable coincidence with 422-keV γ ray leading its placement

as de-exciting the 2368-keV level. Furthermore, an 1876-keV γ ray was observed in

definite coincidence with 492-keV γ ray and placed it as de-exciting the 2368-keV

level. Thus our data support that there is a level at 2368-keV which is in agreement

with previous work [71]. We have corrected the placement of 1876-keV γ ray to the

2368-keV level and not the 2507-keV level as reported by Meierhofer et al. [71].
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19. A level at 2501 keV is proposed by placing the γ ray of energy 1882 keV feeding

the 619-keV level. We observed a 1882-keV γ ray which shows definite coincidence

with 459-keV γ ray leading its placement as de-exciting the 2501-keV level. The

level at 2501 keV is represented by the solid line although it is proposed by a single

γ ray because the placement of 1882-keV γ ray is based on definite coincidences in

both directions.

20. A level at 2567 keV is firmly proposed by placing the two γ rays of energies 1948

keV and 2078 keV feeding the 619 keV and 492 keV levels respectively. Both γ rays

were not observed in any previous studies. We observed a 1948-keV γ ray in definite

coincidence with 459-keV γ ray leading its placement as de-exciting the 2576-keV

level. Furthermore, an observed 2078-keV γ ray shows definite coincidence with

492-keV γ ray and placed it as de-exciting the 2567-keV level. Hence, our data

suggest that there is a level at 2567 keV.

21. A level at 2724 keV is proposed by placing the γ-ray transition of energy 2106 keV

feeding the 2105-keV level. In this measurement, we observed a 2106-keV γ ray

which shows a definite coincidence with 459-keV γ ray leading its placement as de-

exciting the 2723-keV level. The level at 2724 keV is represented by the solid line

although it was proposed by the single γ ray as the placement of 2105-keV γ ray is

based on definite coincidences in both directions.

22. A level at 2814 keV is firmly proposed by placing the three 2185-, 2196- and 2392-

keV γ rays feeding the 630-, 619- and 421-keV levels respectively. We observed

173



www.manaraa.com

a 2185-keV γ ray is in definite coincidence with 470-keV γ ray only leading its

placement as de-exciting the 2814-keV level. Furthermore, an observed 2196-keV

γ ray shows definite coincidence with 459-keV γ ray leading its placement as de-

exciting the 2814-keV level. Besides that, a 2392-keV γ ray was observed which is

in definite coincidence with 421-keV γ ray and have placed as de-exciting the 2814-

keV level. Thus our data strongly support that there is a level at 2814-keV which is

in agreement with neutron capture study [71]. We have corrected the placement of γ

ray of energy 2196 keV reported from neutron capture reaction study [71] whereas

2392-keV γ ray is newly observed in our measurement.

23. A level at 2877 keV is proposed by placing the two γ rays of energies 2247 keV

and 2385 keV feeding the 630-keV and 492-keV levels respectively. We observed

a 2247-keV γ ray in definite coincidence with 470-keV γ ray leading its placement

as de-exciting the 2877-keV level. Furthermore, an observed 2385-keV γ ray shows

definite coincidence with 492-keV γ ray and have placed it as de-exciting the 2877-

keV level. Both γ rays which are placed de-exciting the level at 2876 keV are newly

observed in this measurement. Consequently, our data suggest that there is a level at

2877 keV.

24. A level at 3023 keV is proposed by placing the γ ray of energy 2113 keV feeding the

910-keV level. We observed a 2113-keV γ ray which shows definite coincidences

with 418-keV γ ray leading its placement as de-exciting the 3023-keV level. We
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represented this level with a dashed line in the decay scheme as is new level proposed

from a single γ ray.

25. Finally, a level at 3143 keV is tentatively proposed by placing the γ ray of energy

2526 keV feeding the 619-keV level. We observed a 2526-keV γ ray in probable

coincidence 459-keV γ ray leading its placement at 3143-keV level. This γ rays and

corresponding level both are new information observed in our experiment. The level

at 3143 keV is represented by a dashed line in the decay scheme. This is the highest

energy level proposed by our measurement.

From our closer observation, we identified 18 γ rays associated with the 77Ga β decay

contains the components of other decay elements. Some of them are from the background

whereas some of them from the other daughter elements of the decay chain. These γ rays

are of energy: 115, 127, 198, 292, 418, 505, 534, 561, 627, 665, 668, 795, 831, 1347, 1447,

1457, 1555 and 2385 keV. We used the coincidence technique explained in Chapter 4 to

find their proper intensity associated with 77Ga. Furthermore, we used the ratio of γ single

spectra to the β-gated spectra of the all observed γ-ray peaks to identify the association of

the γ ray to the proper elements in the decay chain.
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Table 8.2: Feeding intensities (Iβ−), lower limit log (ft) and assigned spin-parity value for
77Ga β decay. The β-feeding value are given per 100 decays.

Energy Level Iβ− log (ft) Spin-parity from NNDC
0.00◦ 0 8.5 7/2+

159.58(5) 40(25) 5.6 1/2−

225.0(5)‡ - - -
421.21(5)◦ 0 >9.09 5/2+

491.84(6)‡◦ 0 >9.1 5/2−

505.38(5)‡◦ 0 >9.1 5/2−

618.70(5)◦ 0 >9.0 (3/2+)
629.56(6) 6.8(8) 6.17 3/2−

760.5(5)‡ - - -
884.17(18)‡ 0.92 6.93
910.22(9)‡ 0.61(17) 7.09
1021.28(7) 2.8(6) 6.38
1047.81(7) 3.1(2) 6.33
1052.73(10)‡ 3.3(7) 6.30
1286.57(8)‡ 1.7(4) 6.47
1359.05(13) 1.47(18) 6.5
1458.1(2)† 0.73(15) 6.75
1462.4(2)† 1.09(16) 6.58
1599.97(8)† 1.0(4) 6.54
1663.35(6) 11.7(4) 5.44 3/2−

1878.87(12)‡ 2.3(3) 6.03
1900.68(19)‡ 1.10(14) 6.34
1952.7(5)‡ 0.55(5) 6.6
1977.19(13)† 3.5(3) 5.79
2090.2(3)† 0.60(14) 6.49
2368.1(2)‡ 2.0(2) 5.80
2500.5(5)† 1.7(3) 5.77
2567.4(3)† 1.1(2) 5.92
2724.3(7)† 0.6(3) 6.07
2814.42(7)‡ 7.7(6) 4.89
2876.5(2)† 1.2(2) 5.64
3022.3(5)† 2.0(5) 5.3
3143.3(9)† 1.5(5) 5.34
◦ Feeding to this level was consistent with zero.
† Newly established energy level.
‡ Newly established energy level agreed with at least one other measurements [57, 71].
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8.2.3 β-Feeding and Log(ft) Value

After constructing the decay scheme, we attempted to find the β-feeding to the each

level using the MASTER program. But, we cannot directly calculate the β-feeding in-

tensity and branching ratio of this decay as it’s first excited state (160 keV) is a isomeric

state. We have taken the spin-parity consideration to assign the tentative β-feeding to the

ground level and the isomeric state 160 keV. The ground state of parent nuclei 77Ga has

the spin-parity 3/2− form its upaired proton in the π2p3/2 states which is confromed from

several studies [100]. It decays to 77Ge through the β decay. The ground state of 77Ge has

7/2+ spin-parity confirmed from other measurements [100], which create the scenario of

unique first forbidden transition form 3/2− to 7/2+ (∆J = 2, ∆π = -1) and should have low

log (ft) value in range 8 to 9 [62]. We assume it to be 8.5(2) which gives the almost zero β

feeding (0.05(2) %) to the ground state. Spin-parity of isomeric state 160 keV has assigned

1/2− from several studies [100]. Decay from 3/2− to 1/2− crates the scenario of allowed

transition (∆J = 1, ∆π = +1) and should have low log (ft) value. We assume the log (ft)

value for 160-keV level to be 5.6(3), which estimates the β-feeding value 40(25)%, which

is shown in Figure 8.3. This shows that the rest of around 60% only feeds the other states

in the decay scheme.

Our rough estimate for the β-feeding to level 160 keV comes in perfect agreement with

the results obtained using a coefficient of Internal Conversion (IT) reported by Kibedi et

al. [58]. From our proposed decay scheme, summed intensity feeding the 160-keV level is

208.78(341)%. The intensity of 160-keV γ ray is observed to be 43.24(93)%. We calcu-

lated the actual intensity using the internal coefficient (α = 0.836) [6] and equation:(1 +

177



www.manaraa.com

Figure 8.3: Un-observed β-feeding for 77Ga β decay. The estimated β-feeding intensities

are shown on the left next to the energy levels. (See text for details.)

α)I160. It comes to be 79.39(93) %. As only 19(2)% of 160-keV level undergoes the Inter-

nal Conversion, the actual intensity of the 160-keV γ peak is calculated to be 417.8(442)%.

Then the calculated absolute β-feeding to 160-keV level appeared to be 39.6(91)%. Fur-

thermore, based on the above assumption, we have calculated the absolute β-feeding in-

tensity for each proposed levels which are listed in Table 8.2.

Lower limit log (ft) values for all the proposed levels shown in Table 8.2 is calculated

using the NNDC website [6]. We have used the Qβ− value 5220.5(24) keV and T1/2 =

13.2(2) s taken from AME2012 calculations [112].

8.2.4 Spin-Parity Assignment and Nushellx Result

Our calculated log (ft) value is not conclusive to assign the spin-parity of most of

the states. We have calculated the level structure of 77Ge using the Nushellx [23] using

the JUN45 effective interactions and JJ44 model space which is shown in Figure 8.4.

We have compared our decay scheme with theoretical results and found that the Nushellx
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Figure 8.4: Nushellx predictions of structure of 77Ge.

calculation is not in agreement with our experimental results. Nushellx predicts the ground

state to be 9/2+ but we assigned to be 7/2+. This assignment is consistent with several

other measurements [100].

8.3 Discussion and Conclusion

Using the pure beam and high-efficiency clover detectors, we have been able to identify

77 γ rays associated with the 77Ga β decay and established the decay scheme up to 3.24

MeV based on statistically significant γγ coincidences. We observed all 13 γ rays reported

in previous β-decay study. Out of the 77 γ rays we observed, 30 of them are in agreement

with other studies than β decay and are already listed in NNDC, whereas rest of the γ rays

are totally new observed from this measurement associated with this decay. Our proposed

decay scheme contains 33 energy levels of which 9 are reported in previous β-decay work,
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13 agreed with other measurements, while 11 are newly populated form the new γ-ray

transitions. We have identified 18 γ rays having the components form other elements in

the decay chain and room background. We used the β-gated spectra and coincidence infor-

mation to divide their proper intensities associated with this decay. Furthermore, we have

calculated the β-feeding intensity and log (ft) values for all the proposed level, and have

compared our proposed decay scheme with the Nushellx theoretical calculations. From the

present measurement, we have extended the decay scheme with a better understanding of

the coincidence information and filled the decay scheme with a lot more γ rays.
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CHAPTER IX

CONCLUSION

Starting from an isobarically purified 74−77Cu beam at the Holifield Radioactive Ion

Beam Facility of Oak Ridge National Lab, we have performed a detailed β-decay studies

of 74−77 Ga nuclei using the four clovers HPGe detectors. From the careful analysis of four-

sets of 74−77Ga β-decay data, we have established a more comprehensive decay scheme for

all corresponding Germanium nuclei based on γγ coincidences. We have introduced the

statistical significant factor (S) which adds the confidence on the placement of the γ ray to

a new level along with removing the experimental biases. In most of the cases, we have

extended the energy levels to cover more energy window available for β decay, confirmed

the placement of γ rays assigned in the previous studies, corrected the placement of some

incorrectly placed γ rays and energy levels. The previous experiment failed to observe

the weak γ rays due to the poor detection efficiency of the detector, beam production

rate and source contamination. From the expended level scheme, β-feeding intensity and

corresponding log (ft) values were calculated and tentative or firm spin-parity assignments

were made whenever possible for all proposed levels. Finally, shell model-calculations are

used for comparison to the observed level density.
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Although 74−77Ga is not considered as a major contributor of the decay heat, the present

studies will provide us with a better understanding of the pandemonium effect and how it

is related to other nuclei which need to be studied. Present β-decay spectroscopy studies

definitely have improved our understanding of the nuclear structure near/far from stability

for some nuclei and can be used to improve the modeling of nucleosynthesis process, which

will affect the prediction of r-process path.

Still, we have limitations of detecting all the γ rays due to the efficiency of the detector

although recent experiment utilized a detector whose efficiency was much higher compared

to previous studies, we expect to revisit some of the nuclei with Total Absorption Spec-

troscopy (TAS) or Modular Total Absorption Spectroscopy (MTAS) technique [88,118] in

the future.
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[68] E. Mané, B. Cheal, J. Billowes, M. Bissell, K. Blaum, F. Charlwood, K. Flanagan,
D. Forest, C. Geppert, M. Kowalska, et al., “Ground-state spins and moments of
72,74,76,78Ga nuclei,” Physical Review C, vol. 84, no. 2, 2011, p. 024303.

[69] M. G. Mayer and J. H. D. Jensen, “Elementary theory of nuclear shell structure,”
1955.

[70] E. McCutchan, “Nuclear data sheets for A= 83,” Nuclear Data Sheets, vol. 125,
2015, pp. 201–394.

[71] G. Meierhofer, P. Grabmayr, L. Canella, P. Kudejova, J. Jolie, and N. Warr, “Prompt
γ rays in 77Ge and 75Ge after thermal neutron capture,” The European Physical
Journal A, vol. 48, no. 2, 2012, p. 20.

[72] S. Michimasa, S. Shimoura, H. Iwasaki, M. Tamaki, S. Ota, N. Aoi, H. Baba,
N. Iwasa, S. Kanno, S. Kubono, et al., “Proton single-particle states in the neutron-
rich 23F nucleus,” Physics Letters B, vol. 638, no. 2-3, 2006, pp. 146–152.

[73] K. Miernik, K. P. Rykaczewski, R. Grzywacz, C. J. Gross, M. Madurga, D. Miller,
D. W. Stracener, J. C. Batchelder, N. T. Brewer, L. Cartegni, A. Fijałkowska,
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S. V. Paulauskas, J. A. Winger, M. Woli ńska Cichocka, and E. F. Zganjar, “β-decay
study of 94Kr,” Phys. Rev. C, vol. 94, Aug 2016, p. 024305.

[74] S. Mordechai, H. Fortune, R. Middleton, and G. Stephans, “74Ge (t, p) 74Ge Reac-
tion,” Physical Review C, vol. 18, no. 6, 1978, p. 2498.

[75] S. Mukhopadhyay, B. Crider, B. Brown, S. Ashley, A. Chakraborty, A. Kumar,
M. McEllistrem, E. Peters, F. Prados-Estévez, and S. Yates, “Nuclear structure of
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